Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Алгоритм зворотного розповсюдження помилки для навчання нейтронної мережі
Суть алгоритму зводиться до послідовного подання на вхід мережі еталонних значень (рис.3), визначення вихідного вектору мережі (прямий прохід), і корегування коефіцієнтів ваги для зв’язків нейронів на основі визначення різниці між еталонним значенням вихідного вектору та отриманим (зворотній прохід). Корегування відбувається на основі норми навчання та коефіцієнта інерції . Навчання мережі припиняється при досягненні збіжності між еталонним та отриманим значенням вихідного вектора для всіх еталонних прикладів.
При реалізації алгоритму норму навчання обрати на рівні 0.3, а коефіцієнт інерції 0.7. Значення кожного біту вихідного вектора визначати за формулою: Послідовність кроків алгоритму:
Перелік позначень: i, j, k – індекси; -i-ий вхідний сигнал нейрону; - ваговий коефіцієнт з’єднання i-го та j-го нейронів; - сумарне вхідне значення нейрону j; - вихідне значення нейрону j; - функція активації; - значення помилки для j-го нейрону; - еталонне значення j-го нейрону зовнішнього шару; - помилка для вагового коефіцієнта зв’язку між нейронами i та j на n кроці обчислень - норма навчання; - коефіцієнт інерції; Converge – ознака припинення навчання. Рис.4. Приклади для тестування нейронної мережі
В звіті представити:
|