Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Систематическая выборка






Систематическая выборка (отбор) — процедура отбора каждого k-то эле­мента из списка элементов генеральной совокупности.

Систематический отбор является вторым по научной значимости, но пер­вым по популярности употребления видом простого случайного отбора. Его называют еще механическим отбором и считают упрощенным вариантом про­стого случайного отбора.

Примером служат разного рода квартирные выборки: выбираются улицы, на которых интервьюер проводит квартирный опрос. Квартиры выбирают­ся по определенной схеме (крайняя квартира справа от лестницы на послед­нем этаже первого подъезда и т.д.).

Процедура систематического отбора проста: количество единиц генераль­ной совокупности, предположим 2000 работников предприятия, делится на количество анкет, скажем 200, и определяется шаг выборки. Он предполага­ет, что, начиная с любого номера из списка, опрашивается каждый десятый (2000: 200= 10). В формализованном виде данная процедура выглядит так:

где к — шаг выборки, N— численность генеральной совокупности, и — численность выборочной совокупности.

Таким образом, шаг выборки, а его еще называют «интервалом скачка» или просто «интервалом», — это математический показатель, рассчитанный как от­ношение объема генеральной совокупности к объему выборки. Он показывает, сколько номеров в списке фамилий людей, вошедших в генеральную совокуп­ность, надо пропустить (через сколько перешагнуть), чтобы в итоге получить список выборочной совокупности. Буквально шаг выборки означает расстоя­ние между соседними фамилиями респондентов, измеренное количеством от­бракованных фамилий из списка генеральной совокупности (рис. 10).

Рис. 10. Шаг выборки

Предположим, что нам нужно спроектировать выборку численностью 100 из списка 5000 студентов какого-то вуза. Если мы намерены использовать систе­матическую выборку, то должны вначале рассчитать интервал выборки делением числа элементов в списке на размер выборки. В данном случае, разделив 5000 имен на требуемый размер выборки 100 единиц, мы получим интервал (шаг) выборки 50. Так что мы будем систематически двигаться по списку и отбирать каждого пятидесятого студента (отобрав таким образом 100 имен). Определе­ние того места в списке, с которого мы начнем, проводится случайным обра­зом, по таблице случайных чисел (это называется случайным стартом). Таким образом, если случайно выбрана точка старта под номером 31, то в выборку будут включены студенты, стоящие под номерами 31, 81, 131, 181 и т.д.

Итак, в основу систематической выборки положены не вероятностные про­цедуры, а алфавитные списки, картотеки, схемы, которые обеспечивают рав­новероятное попадание в выборку всех единиц генеральной совокупности.

Несмотря на свои преимущества, систематическая выборка может иног­да иметь своим результатом предубежденную выборку. Такая ситуация возникает, например, когда элементы размещены в списке, ранжированном по каким-то характеристикам. В этой ситуации определение места начала случайного отбора будет влиять на средние характеристики всей выборки. Например, если студенты расставлены в списке в соответствии со средним оценочным баллом от высшего к низшему, систематическая выборка, вклю­чающая студентов, стоящих в списке под номерами 1, 51, 101, будет иметь более низкий средний балл, чем выборка, включающая студентов под номе­рами 50, 100 и 150. Каждая новая выборка будет давать другой средний балл, который представляет собой предубежденную картину студенческой попу­ляции.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.