Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Функции.






1. Обеспечение клетки энергией в виде АТФ.

2. Участие в биосинтезе стероидных гормонов (некоторые звенья био­синтеза этих гормонов протекают в митохондриях). Клетки-продуценты сте

роидных гормонов имеют крупные митохондрии со сложными крупными трубчатыми кристами.

3. Депонирование кальция.

4. Участие в синтезе нуклеиновых кислот. В некоторых случаях в результате мутаций митохондриалыюй ДНК возникают так называемые митохондриальные болезни, проявляющиеся широкой и тяжелой симптоматикой. ЛИЗОСОМЫ. Это мембранные органеллы, не видимые в световом микроскопе. Были открыты в 1955 году К. де Дювом при помощи элект­ронного микроскопа (рис. 3.7). Представляют собой мембранные пузырьки, содержащие гидролитические ферменты: кислую фосфатазу, липазу, протеазы, нуклеазы и др., всего более 50 ферментов. Различают лизосомы 5 типов:

1. Первичные лизосомы, только что отделившиеся от транс-поверхнос­ти комплекса Гольджи.

2. Вторичные лизосомы, или фаголизосомы. Это лизосомы, которые соединились с фагосомой — фагоцитированной частицей, окруженной мембраной.

3. Остаточные тельца — это слоистые образования, формирующиеся в том случае, если процесс расщепления фагоцитированных частиц прошел не до конца. Примером остаточных телец могут быть липофусциновые включения, которые появляются в некоторых клетках при их старении, со­держат эндогенный пигмент липофусцин.

4. Первичные лизосомы могут сливаться с погибающими и старыми органеллами, которые они разрушают. Такие лизосомы называются ауто-фагосомами.

5. Мультивезикулярные тельца. Представляют собой крупную ва­куоль, в которой, в свою очередь, находятся несколько так называемых внутренних пузырьков. Внутренние пузырьки, очевидно, образуются пу­тем отпочковывания внутрь от мембраны вакуоли. Внутренние пузырьки могут постепенно растворяться содержащимися в матриксе тельца фер­ментами.

Функции лизосом: 1. Внутриклеточное пищеварение. 2. Участие в фагоцитозе. 3. Участие в митозе — разрушении ядерной оболочки. 4. Участие во внутриклеточной регенерации.5. Участие в аутолизс — саморазрушении клетки после ее гибели.

Существует большая группа болезней, называемых лизосомными бо­лезнями, или болезнями накопления. Они являются наследственными бо­лезнями, проявляются дефицитом определенного лизосомального пигмен­та. При этом в цитоплазме клетки накапливаются непереваренные продукты

 


обмена веществ (гликоген, гликолиниды, белки, рис. 3.7, б, в), что ведет к постепенной гибели клетки. ПЕРОКСИСОМЫ. Пероксисомы — это оргаиеллы, напоминающие ли-зосомы, но содержащие ферменты, необходимые для синтеза и разрушения эндогенных перекисей — нероксидазу, каталазу и другие, всего до 15. В электронном микроскопе представляют сферические или эллипсоидные пу­зырьки с умеренно плотной сердцевиной (рис. 3.8). Образуются пероксисо­мы путем отделения пузырьков от гладкой ЭПС. В эти пузырьки затем миг-рируют ферменты, которые синтезируются отдельно в цитозоле или в грану­лярной ЭПС

 

 

Функции пероксисом: 1. Являются, наряду с митохондриями, органеллами утилизации кис­лорода. В результате в них образуется сильный окислитель Н202. 2. Расщепление при помощи фермента каталазы избытка перекисей и, таким образом, защита клеток от гибели. 3. Расщепление при помощи синтезируемых в самих пероксисомах пере­кисей токсических продуктов, имеющих экзогенное происхождение (детоксикация). Такую функцию выполняют, например, пероксисомы печеноч­ных клеток, клеток почек. 4. Участие в метаболизме клетки: ферменты пероксисом катализируют расщепление жирных кислот, участвуют в обмене аминокислот и других веществ.

 

Существуют так называемые пероксисомные болезни, связанные с де­фектами ферментов пероксисом и характеризующиеся тяжелыми поражени­ями органов, что ведет к смерти в детском возрасте. НЕМЕМБРАННЫЕ ОРГАНЕЛЛЫ

РИБОСОМЫ. Это оргаиеллы биосинтеза белка. Они состоят из двух рибонуклеоиротеидных субьединиц — большой и малой. Эти субъедини­цы могут соединяться вместе, при этом между ними располагается молеку­ла информационной РНК. Есть свободные рибосомы — рибосомы, не свя­занные с ЭПС. Они могут быть одиночными и в виде полисом, когда на одной молекуле и-РНК находятся несколько рибосом (рис. 3.9). Вторая разновидность рибосом — связанные рибосомы, прикрепленные к ЭПС.

 


 

 

Функция рибосом. Свободные рибосомы и полисомы осуществляют биосинтез белка для собственных потребностей клетки.

 

Связанные на ЭПС рибосомы синтезируют белок на " экспорт", для нужд всего организма (например, в секреторных клетках, нейронах и др.).

МИКРОТРУБОЧКИ. Микротрубочки являются органеллами фибрил­лярного типа. Они имеют диаметр 24 им и длину до нескольких мкм. Это прямые длинные полые цилиндры, построенные из 13 периферических ни­тей, или протофиламентов. Каждая нить образована глобулярным белком тубулином, который существует в виде двух субъединиц — аир (рис. 3.10). В каждой нити эти субъединицы располагаются поочередно. Нити в микротрубочке имеют спиральный ход. В стороны от микротрубочек отходят ассоциированные с ними молекулы белков (ассоциированные с мик­ротрубочками протеины, или MAP). Эти белки стабилизируют микро­трубочки, а также связывают их с другими элементами цитоскелета и орга-неллами. С микротрубочками связан также белок кииезин, который пред­ставляет собой фермент, расщепляющий АТФ и преобразующий энергию ее распада в механическую энергию. Одним концом кииезин связывается с оп­ределенной органеллой, а другим за счет энергии АТФ скользит вдоль мик­ротрубочки, перемещая таким образом органеллы в цитоплазме

 


Микротрубочки являются очень динамичными структурами. Они имеют два конца: (-) и (+)концы. Отрицательный конец является местом де­полимеризации микротрубочки, тогда как на положительном конце проис­ходит их наращивание за счет новых молекул тубулина. В некоторых случа­ях (базальное тельце) отрицательный конец как бы заякоривается, и рас­пад здесь прекращается. В результате происходит увеличение размеров рес­ничек из-за наращивания на (+) — конце.

Функции микротрубочек заключаются в следующем. 1. Выполняют роль цитоскелета;

2. Участвуют в транспорте веществ и органелл в клетке;

3. Участвуют в образовании веретена деления и обеспечивают рас­хождение хромосом в митозе;

4. Входят в состав центриолей, ресничек, жгутиков.

Если клетки обработать колхицином, разрушающим микротрубочки цитоскелета, то клетки изменяют свою форму, сжимаются, теряют способ­ность к делению.

МИКРОФИЛАМЕНТЫ. Это второй компонент цитоскелета. Есть два вида микрофиламентов: 1) актиновые; 2) промежуточные. Кроме того, цитоскелет включает множество вспомогательных белков, которые связы­вают филаменты друг с другом или с другими клеточными структурами.

Актиновые филаменты построены из белка актина и образуются в результате его полимеризации. Актин в клетке находится в двух формах: 1) в растворенной форме (G-актин, или глобулярный актин); 2) в полимери-зованиой форме, т.е. в виде филаментов (F-актин). В клетке существует динамическое равновесие между 2 формами актина. Как и в микротрубоч­ках, в актиновых филаментах имеются (+) и (-) — полюсы, и в клетке идет постоянный процесс распада этих филамент на отрицательном и со­зидание на положительном полюсах. Этот процесс называется тредмил-лингом. Он играет важную роль в изменении агрегатного состояния ци­топлазмы, обеспечивает подвижность клетки, участвует в перемещении ее органелл, в формировании и исчезновении псевдоподий, микроворсинок, протекании эндоцитоза и экзоцитоза. Микротрубочки создают каркас микро­ворсинок, а также участвуют в организации межклеточных включений.

Промежуточные филаменты — филаменты, имеющие толщину, большую, чем у актиновых филаментов, но меньшую, чем у микротрубо­чек. Это самые стабильные филаменты клеток. Выполняют опорную функ­цию. Например, эти структуры лежат по всей длине отростков нервных клеток, в области десмосом, в ци­топлазме гладких миоцитов. В клетках разного типа промежуточ­ные филаменты отличаются по со­ставу. В нейронах образуются ней-рофиламенты, состоящие из трех различных полипентидов. В клет­ках нейроглии промежуточные филаменты содержат кислый глиальный белок. В эпителиаль­ных клетках содержатся кератиновые филаменты (тонофила-менты) (рис. 3.11).

 


В мышечных клетках (за исключением миоцитов сосудов) промежуточные филаменты состоят из белка десмина. В различных клетках мезенхимного происхож­дения, в том числе и в миоцитах сосудов, содержатся виментиновые фи­ламенты.

 

 


КЛЕТОЧНЫЙ ЦЕНТР (рис. 3.12). Это видимая и световой микроскоп органелла, однако ее тонкое строение позволил изучить только электронный микроскоп. В интерфазной клетке клеточный центр состоит из двух цилинд­рических полостных структур длиной до 0, 5 мкм и диаметром до 0, 2 мкм. Эти структуры называются центриолями. Они образуют диплосому. В диплосоме дочерние центриоли лежат под прямым углом друг к другу. Каж­дая центриоль состоит из расположенных по окружности 9 триплетов мик­ротрубочек, которые частично сливаются по длине. Кроме микротрубочек, в состав цептриолей входят " ручки" из белка динеина, которые соединяют со­седние триплеты в виде мостиков. Центральные микротрубочки отсутствуют, и формула центриолей — (9хЗ)+0. Каждый триплет микротрубочек свя­зан также со структурами сферической формы — сателлитами. От сателли­тов расходятся в стороны микротрубочки, образуя центросферу.

Центриоли являются динамичными структурами и претерпевают изме­нения в митотическом цикле. В неделящейся клетке парные центриоли (центросома) лежат в околоядерной зоне клетки. В S-периоде митотического цикла они дуплицируются, при этом под прямым углом к каждой зрелой центриоли образуется дочерняя центриоль. В дочерних центриолях вначале имеется только 9 единичных микротрубочек, но по мере созревания центри­олей они превращаются в триплеты. Далее пары центриолей расходятся к полюсам клетки, становясь центрами организации микротрубочек ве­ретена деления.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.