Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теорема. Если - тотальная биекция, то отношение (обратная функция) является биекцией. ⇐ ПредыдущаяСтр 8 из 8
Если - тотальная биекция, то отношение (обратная функция) является биекцией.
Доказательство 1) Покажем, что - функция Пусть , . Тогда и , но f – инъекнктивна, следовательно и - функция. 2) Покажем, что - инъенктивна. Пусть и , следовательно и , но f – функция, а значит . 3) Покажем, что - сюрьективна. Проведем доказательство методом от противного. Пусть для которого такого, что . Тогда такое, что для . Обозначим этот элемент . Имеем . Следовательно , а значит , поскольку исходная функция тотальная. Пришли к противоречию.
Пример Пусть }. Рассмотрим функцию . Данная функция является тотальной биекцией. Исходя из условия определена для всех элементов множества А. Следовательно, тотальна. Покажем, что функция инъективна. Предположим, что , то есть не выполняется условие инъективности. Получаем или . Значит . Следовательно, функция – инъективна. Покажем, что функция сюрьективна. Возьмем произвольный элемент b из области значений нашей функции. Ему будет соответствовать элемент , такой, что . По определению функции . Отсюда .То есть, какое бы мы не взяли значение из области значений, мы всегда найдем соответствующее ему значение из области определения. Следовательно, функция – сюрьективна. Обратная для нее функция .
|