Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Логическая природа индукции






    Дедуктивные умозаключения позволяют выводить из истинных посылок при соблюдении соответствующих правил истинные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдоподобные заключения.

    В определении индукции в логике выявляются два подхода.

    1. В традиционной (не в математической) логике индукцией называется умозаключение от знания меньшей степени общности к новому знанию большей степени общности (т. е. от отдельных частных случаев мы переходим к общему суждению).

    2. В современной математической логике индукцией называют умозаключение, дающее вероятное суждение.

    Общее в природе и обществе не существует самостоятельно, до и вне отдельного, а отдельное не существует без общего; общее существует в отдельном, через отдельное, т. е. проявляется в конкретных предметах. Поэтому общее, существенное, повторяющееся и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. В зависимости от избранного основания выделяют индукцию полную и неполную. По другому основанию выделяют математическую индукцию.

    Полной индукцией называется такое умозаключение, в котором общее заключение о всех элементах класса предметов делается на основании рассмотрения каждого элемента этого класса.

    Заключение может быть сделано из единичных суждений, как это видно из приведенного ниже умозаключения. Явление, о котором пойдет речь, образно называют «парадом» планет. Один раз в 179 лет все планеты располагаются вместе по одну сторону от Солнца в секторе с углом примерно в 95 градусов. В последний раз это явление наблюдалось в 1982 г.

    Земля в 1982 г. была расположена вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно в 95 градусов.

    Марс в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов

    …………………………………………………………………………………………………………………………………………………………………

    Меркурий в 1982 г. был расположен вместе с другими планетами по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

    Земля, Марс, Венера, Нептун, Плутон, Сатурн, Уран, Юпитер, Меркурий — планеты Солнечной системы.

    _____________________________________________________________________________________

    Все планеты Солнечной системы в 1982 г. были расположены вместе по одну сторону от Солнца в секторе с углом приблизительно 95 градусов.

    Заключение по полной индукции может быть сделано не только из единичных, но и из общих суждений.

    К полной индукции относится доказательство по случаям. Много примеров доказательства по случаям предоставляет математика, в том числе ее школьный курс. Пример доказательства разбором случаев дает теорема: «Объем прямоугольного параллелепипеда равен произведению трех его измерений» (v — abc). При доказательстве этой теоремы рассматриваются особо следующие три случая:

    1) измерения выражаются целыми числами;

    2) измерения выражаются дробными числами;

    3) измерения выражаются иррациональными числами.

    Полная индукция дает достоверное заключение, поэтому она часто применяется в математических и в других строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:

    1. Точно знать число предметов или явлений, подлежащих рассмотрению.

    2. Убедиться, что признак принадлежит каждому элементу этого класса.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.