Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Задача, содержащая в свободных членах системы ограничений параметр






    Дана линейная функция и система линейных ограничений

    (3.2.1)

    (3.2.2)

    Алгоритм решения задачи (3.2.1)-(3.2.2) подобен рассмотренному выше алгоритму решения задачи (3.1.1)-(3.1.2). Полагая значение параметра равным некоторому числу находим решение полученной задачи линейного программирования. При данном значении параметра , либо определяем оптимальный план задачи, либо установим ее неразрешимость. В первом случае найденный план является оптимальным для любого , где

     

    и числа и определены компонентами оптимального плана и зависят от :

    .

    Если при задача (3.2.1) - (3.2.2) неразрешима, то либо целевая функция задачи (3.2.1) не ограничена на множестве планов, либо система уравнений (3.2.2) не имеет неотрицательных решений. В первом случае задача неразрешима для всех , а во втором случае определяем все значения параметра , для которых система уравнений (3.2.2) несовместна, и исключаем их из рассмотрения. После определения промежутка, в котором задача (3.2.1) - 3.2.2) имеет один и тот же оптимальный план или неразрешима, выбираем новое значение параметра , не принадлежащее найденному промежутку, и находим решение полученной задачи линейного программирования. При этом решение новой задачи ищем с помощью двойственного симплекс-метода. Продолжая итерационный процесс, после конечного числа шагов получаем решение задачи (3.2.1) - (3.2.2). Итак, процесс нахождения решения задачи (3.2.1) - (3.2.2) включает следующие основные этапы:

    1. Считая значение параметра равным некоторому числу , находят оптимальный план или устанавливают неразрешимость полученной задачи линейного программирования.

    2. Находят значения параметра , для которых задача (3.2.1) - (3.2.2) имеет один и тот же оптимальный план или неразрешима. Эти значения параметра исключают из рассмотрения.

    3. Выбирают значения параметра из оставшейся части промежутка и устанавливают возможность определения нового оптимального плана. В случае существования оптимального плана находят его двойственным симплекс-методом.

    4. Определяют множество значений параметра , для которых задача имеет один и тот же новый оптимальный план или неразрешима. Вычисления проводят до тех пор, пока не будут исследованы все значения параметра .

    Пример 3.2.1. Для каждого значения параметра найти максимальное значение функции

    Решение. Считая , находим решение:

     

     

    Таблица 3.2.1.

    БП СЧ
             
      -1      
    -2        
    С   -1      

     

    Таблица 3.2.2.

    БП СЧ
            -1/2
            1/2
    -1       1/2
    С         1/2

    Оптимальный план при : . Этот план будет оставаться оптимальным, пока среди его компонент не окажется отрицательного числа:

     

    .

     

    Следовательно, при : Исследуем, имеет ли задача оптимальные планы при . Если , то и, следовательно, не является планом задачи. Поэтому надо перейти к новому плану. Это можно сделать, когда в строке имеются отрицательные числа. В данном случае это условие выполняется. Переходим к оптимальному плану, применяя двойственный симплекс-метод.

     

    Таблица 3.2.3.

    БП СЧ
            1/2
             
      -1     -1/2
    С          

     

    , Этот план остается оптимальным при

    .

    Если , то это решение не является планом, так как
    . Так как в строке нет отрицательных чисел, то исходная задача неразрешима.

    При , не является планом, так как . С помощью таблицы 3.2.2 переходим к следующему решению:

     

    Таблица 3.2.4.

    БП СЧ
    -4   -2    
             
             
    С          

    , Этот план оптимален при условии . При задача неразрешима, так как в строке нет отрицательных чисел.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.