Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение задачи методом ветвей и границ 1 страница. Согласно методу для каждой целочисленной переменной возможно задать верхнюю и нижнюю границу, в пределах которых содержится ее оптимальное значение






Согласно методу для каждой целочисленной переменной возможно задать верхнюю и нижнюю границу, в пределах которых содержится ее оптимальное значение. В данном случае нижняя граница равна нулю. На практике верхний предел не вводят в виде дополнительного ограничения, а учитывают его в процессе решения не явно, то есть к исходным ограничения на практике добавляется ограничение, которое определяется самим методом.

Решаем исходную задачу - Задачу №1 (п.1.3) до получения оптимального решения методом линейного программирования. Воспользуемся итоговой таблицей (Таблица 1.13). Эта таблица и будет исходной для нашей задачи (Таблица 2.1.6).

Таблица 2.1.6

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5         -5     -2  
X1 9/2       -1   -1/2    
X2 7/4       -2   1/4 -1 1/2
X3 5/4       -1   -1/4   1/2
Y -16                

 

Полученное решение не удовлетворяет требованиям целочисленности.

Поэтому составляем относительно любой нецелочисленной переменной две новых порожденных задачи (2 и 3). Выберем переменную x1. ПримемY1 = 0.

Новые ограничения строятся по формуле:

1) х ≤ [х*]

2) x ≥ [х*] + 1

где [х*] – целая часть числа х* (нецелочисленная переменная)

Задача №2:

Добавляется ограничение x1≥ 5. Тогда задача примет вид:

 

При ограничениях:

x1≥ 5

и целые.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

 

Таблица 2.1.7

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 -3 -1 -2 0 0 1 0 0 0 0
X6 -9 -2 0 0 2 0 1 0 0 0
X7 -5 -1 -1 1 2 0 0 1 0 0
X8 -2 -1 0 2 -1 0 0 0 1 0
X9 -5 -1 0 0 0 0 0 0 0 1
Y 0 4 1 -3 2 0 0 0 0 0

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.8

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 3/2   -2   -1   -1/2      
X1 9/2       -1   -1/2      
X7 -1/2   -1       -1/2      
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -18     -3            

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x7

Таблица 2.1.9

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 5/2     -2 -3   1/2 -2    
X1 9/2       -1   -1/2      
X2 1/2     -1 -1   1/2 -1    
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -37/2     -2     3/2      

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.10

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5       -2 -4     -2    
X1                   -1
X2       -1 -2     -1    
X8         -1         -1
X6                   -2
Y -20     -2            

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.11

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5         -5     -2    
X1                   -1
X2 3/2       -5/2     -1 1/2 1/2
X3 3/2       -1/2       1/2 -1/2
X6                   -2
Y -17                  

Решение данной задачи: Y=-17; X=(5; 3/2; 3/2; 0; 5; 1; 0; 0; 0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

Для образования порожденных задач выберем переменную x2

Задача №4:

Добавляется ограничение x2≥ 2.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.12

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 -3 -1 -2                
X6 -9 -2                  
X7 -5 -1 -1                
X8 -2 -1     -1            
X9 -5 -1                  
X10 -2   -1                
Y       -3              

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.13

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 3/2   -2   -1   -1/2        
X1 9/2       -1   -1/2        
X7 -1/2   -1       -1/2        
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10 -2   -1                
Y -18     -3              

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.14

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 11/2       -1   -1/2       -2
X1 9/2       -1   -1/2        
X7 3/2           -1/2       -1
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X2                     -1
Y -20     -3              

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.15

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7                   -1 -1
X8         -1         -1  
X6                   -2  
X2                     -1
Y -22     -3              

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.16

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7 1/2       5/2       -1/2 -1/2 -1
X3 3/2       -1/2       1/2 -1/2  
X6                   -2  
X2                     -1
Y -35/2       1/2       3/2 5/2  

Решение данной задачи: Y=-35/2; X=(5; 2; 3/2; 0; 6; 1; 1/2; 0; 0; 0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

 

Для образования порожденных задач выберем переменную x3

Задача №6:

Добавляется ограничение x3≥ 2

Выразим допустимый базис в форме Таккера

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

x11=-2-(0x1+0x2-x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.17

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 -3 -1 -2                  
X6 -9 -2                    
X7 -5 -1 -1                  
X8 -2 -1     -1              
X9 -5 -1                    
X10 -2   -1                  
X11 -2     -1                
Y       -3                

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.18

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 3/2   -2   -1   -1/2          
X1 9/2       -1   -1/2          
X7 -1/2   -1       -1/2          
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X10 -2   -1                  
X11 -2     -1                
Y -18     -3                

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.19

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 3/2           -1/2       -1  
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X11 -2     -1                
Y -20     -3                

Используем двойственный симплекс-метод. Вводим в базис x3, выводим из базиса x11

Таблица 2.1.20

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 -1/2           -1/2       -1  
X8 -3/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X3                       -1
Y -14                     -3

Используем двойственный симплекс-метод. Вводим в базис x4, выводим из базиса x8






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.