Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Решение задачи сепарабельным симплекс-методом
Используя выбранные точки можно преобразовать нелинейные ограничения и нелинейную ЦФ к кусочно-линейному виду. К ограничениям также добавятся ограничения, обеспечивающие свойство весов смежных точек. В итоге получим задачу линейного программирования.
Таблица 3.9. – Целевая функция для сепарабельного симплекс-метода
Таблица 3.10. – Ограничения для сепарабельного симплекс-метода
Введем необходимые свободные и искусственные переменные и выразим все ограничения в форме Таккера. Теперь решим задачу линейного программирования: минимизировать ЦФ вида: Y = x53+x54 → max Сепарабельный симплексный алгоритм аналогичен обычному симплекс методу, за исключением необходимости соблюдения правила ограниченного ввода в базис, суть которого заключается в том, что оптимальное решение, полученное с использованием аппроксимирующей модели, содержит либо один вес , либо два соседних . Оптимизируем искусственную целевую функцию с соблюдением этого правила. Получив оптимальное решение, осуществим стандартную процедуру перехода от искусственной целевой функции к исходной. Теперь решим полученную задачу с помощью сепарабельного симплекс-метода. Все этапы решения приведены в приложении В. Полученные результаты удовлетворяют ограничениям.
Ответ: Y = 26/9, X = (0; 2/3; 0).
|