Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.

Формула Тейлора






Сначала рассмотрим функцию двух переменных . Предполагаем, что в некоторой окрестности точки существуют все частные производные функции до -го порядка включительно. Фиксируем , . Запишем , , тогда значение функции в точке запишется как . Фиксируем и будем считать, что меняется только , тогда

.

Применим к функции формулу Маклорена с остаточным членом в форму Пеано:

В соответствии с нашими обозначениями . Вычислим производные функции через производные функции :

,

,

аналогично

,

,

Легко проверить, что -я производная имеет вид

Подставив все это в формулу Маклорена для и вернувшись к обозначениям , , мы получим

.

Обозначим теперь , ,

.

Так как и отличаются постоянным множителем, то при и наоборот, а также (при ). Тогда полученная нами формула Тейлора для функции двух переменных может быть записана в следующем виде:

 

или

,

где все дифференциалы берутся в точке .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.