Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Формула Тейлора






    Сначала рассмотрим функцию двух переменных . Предполагаем, что в некоторой окрестности точки существуют все частные производные функции до -го порядка включительно. Фиксируем , . Запишем , , тогда значение функции в точке запишется как . Фиксируем и будем считать, что меняется только , тогда

    .

    Применим к функции формулу Маклорена с остаточным членом в форму Пеано:

    В соответствии с нашими обозначениями . Вычислим производные функции через производные функции :

    ,

    ,

    аналогично

    ,

    ,

    Легко проверить, что -я производная имеет вид

    Подставив все это в формулу Маклорена для и вернувшись к обозначениям , , мы получим

    .

    Обозначим теперь , ,

    .

    Так как и отличаются постоянным множителем, то при и наоборот, а также (при ). Тогда полученная нами формула Тейлора для функции двух переменных может быть записана в следующем виде:

     

    или

    ,

    где все дифференциалы берутся в точке .






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.