Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.Для новых пользователей первый месяц бесплатно. Чат-бот для мастеров и специалистов, который упрощает ведение записей: — Сам записывает клиентов и напоминает им о визите; — Персонализирует скидки, чаевые, кешбек и предоплаты; — Увеличивает доходимость и помогает больше зарабатывать; Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.Формула Тейлора ⇐ ПредыдущаяСтр 4 из 4
Сначала рассмотрим функцию двух переменных . Предполагаем, что в некоторой окрестности точки существуют все частные производные функции до -го порядка включительно. Фиксируем , . Запишем , , тогда значение функции в точке запишется как . Фиксируем и будем считать, что меняется только , тогда . Применим к функции формулу Маклорена с остаточным членом в форму Пеано: В соответствии с нашими обозначениями . Вычислим производные функции через производные функции : , , аналогично , , Легко проверить, что -я производная имеет вид Подставив все это в формулу Маклорена для и вернувшись к обозначениям , , мы получим . Обозначим теперь , , . Так как и отличаются постоянным множителем, то при и наоборот, а также (при ). Тогда полученная нами формула Тейлора для функции двух переменных может быть записана в следующем виде:
или , где все дифференциалы берутся в точке .
|