Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Інтервальні оцінки для генеральних середньої та частки
Інтервальною оцінкою ( або надійним, або довірчим інтервалом) параметра генеральної сукупності називається такий інтервал , який із заданою надійністю ( або надійною, або довірчою імовірністю) γ накриває параметр , що оцінюється. При цьому , , де – точкова оцінка (або вибіркове значення) параметра , величина δ знаходиться за нижченаведеними формулами і визначає точність інтервальної оцінки: чим менше δ, тим вища точність. У статистиці величина δ називається граничною помилкою і обчислюється за формулою: δ =t* μ, де величина t називається довірчим числом (або коефіцієнтом довіри), а μ – середньою (або стандартною) помилкою. Довірче число t=tγ (n) знаходиться за таблицями критичних точок розподілу Стьюдента для двосторонньої критичної області в залежності від надійності γ і обсягу вибірки п (див. додаток 3, число степенів вільності k=n– 1, рівень значущості α = 1 –γ). Так, наприклад, t 0, 95(10)=2, 26. Якщо п > 30, то прийнято вважати, що розподіл Стьюдента з достатньою для практичних потреб точністю співпадає з нормальним розподілом і тоді число t=tγ можна знаходити за таблицями значень інтегральної функції Лапласа Ф(х) (див. додаток 5) із умови: Ф(tγ ) =γ / 2. Так, наприклад, t 0, 95=1, 96. Крім того, число tγ можна знаходити за таблицею додатку 3, поклавши . Середні помилки μ для інтервальних оцінок генеральної середньої та генеральної частки р знаходяться за формулами, наведеними в таблиці 2.1: Таблиця 2.1 Середні помилки інтервальних оцінок параметрів та р
Позначення: – вибіркове середнє квадратичне відхилення, яке обчислюється за формулою (1.7), наведеною в л. р. № 1 для відповідного варіаційного ряду: з. в. р., д. в. р. чи і. в. р.; – виправлене середнє квадратичне відхилення; – вибіркова частка варіант, що задовольняють задану умову; l – число варіант, що задовольняють задану умову; N – обсяг генеральної сукупності. Точковими оцінками генеральних середньої та частки р є відповідно вибіркові середня та частка w; при цьому обчислюється за формулами (1.1) – (1.3), наведеними в л. р. № 1 для відповідного варіаційного ряду: з. в. р., д. в. р. чи і. в. р. Таким чином, надійні інтервали для генеральних середньої та частки мають такий вид: – для повторної вибірки: , якщо п > 30; (2.1) , якщо п ≤ 30; (2.2) . (2.3) – для безповторної вибірки: , якщо п > 30; (2.4) , якщо п ≤ 30; (2.5) . (2.6) Очевидно, якщо обсяг вибірки п набагато менший за обсяг генеральної сукупності N (n< < N), то n/N ≈ 0 і формули (2.1) – (2.3) майже збігаються з формулами (2.4) – (2.6). Тому у статистичній практиці прийнято вважати, що якщо n/N < 0, 05, то надійні інтервали можна знаходити за більш простими формулами (2.1) – (2.3) незалежно від схеми відбору. Слід зауважити, що формули для μ х та μ w виведено в припущенні відповідно нормального та біноміального розподілів генеральної сукупності, проте на практиці вони використовуються незалежно від виду розподілу останньої.
|