Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Тройной интеграл в декартовых координатах. Свойства. Оценка. Теорема о среднем.
Предположим, что область интегрирования в тройном интеграле ограничена гладкими поверхностями, заданными в прямоугольной декартовой системе координат . Разобьем область интегрирования на элементарные области плоскостями, параллельными координатным плоскостям, , , . Тогда элементарный объем каждой области будет равен .
По определению:
.

Рис. 1.
Пусть область однозначно проектируется в область на плоскости . При этом поверхность, которая ограничивает область , можно разбить на две поверхности: поверхность , ограничивающая снизу, и поверхность , ограничивающая сверху (рис. 1).
Разобьём область на плоскости на элементарных областей . Обозначим через площадь элементарной области .
На каждой элементарной области построим цилиндр с образующей, параллельной оси . Такой цилиндр вырежет на граничных поверхностях и некоторые элементарные области, которые будем считать плоскими и параллельными координатной плоскости . Каждый цилиндр разобьем на частей плоскостями, параллельными координатной плоскости , и расстояния между плоскостями обозначим через .
В результате область разобьётся на элементарные цилиндры с площадью основания и высотой . Объём элементарного цилиндра равен: .
В каждом элементарном цилиндре выберем точку . Тогда интегральная сумма примет вид:



,
где функция является интегралом с переменным верхним и нижним пределом.
Следовательно, тройной интеграл равен двойному интегралу по проекции на плоскость области . Подынтегральной функцией этого двойного интеграла является интеграл по переменной от функции в пределах: от значения на поверхности, являющейся нижней границей области , до значения на поверхности, являющейся верхней границей .
.
Задача
Вычислить объем тела, ограниченного поверхностями , , 

Рис. 2.
|