Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






За частотним спектром.






2. Дія електромагнітних полів радіочастот на організм людини, рівні допустимого опромінення.

3. Захист від електромагнітних випромінювань радіочастотного діапазону.

 

Д/з: с.165…169, (1); с.161…167, (2).

1. Джерела електромагнітних полів радіочастот, класифікація електромагнітних випромінювань

за частотним спектром .

Розрізняють природні та штучні джерела електромагнітних полів (ЕМП). В процесі еволюції біосфера постійно знаходилась та знаходиться під впливом ЕМП природного походження (природний фон): електричне та магнітне поля Землі, кос­мічні ЕМП, в першу чергу ті, що генеруються Сонцем. У період науково-технічного прогресу людство створило і все ширше використовує штучні джерела ЕМП. В тепе­рішній час ЕМП антропогенного походження значно перевищують природний фон і є тим несприятливим чинником, чий вплив на людину з року в рік зростає. Джере­лами, що генерують ЕМП антропогенного походження є телевізійні та радіотрансля­ційні станції, установки для радіолокації та радіонавігації, високовольтні лінії елект­ропередач, промислові установки високочастотного нагрівання, пристрої, що забезпе­чують мобільний та сотовий телефонні зв'язки, антени, трансформатори і т. п. По суті, джерелами ЕМП можуть бути будь-які елементи електричного кола, через які прохо­дить високочастотний струм. Причому ЕМП змінюєтьсй з тою ж частотою, що й струм, який його створює.

Електромагнітні поля характеризуються певною енергією, яка поширюється в просторі у вигляді електромагнітних хвиль. Основними параметрами електромаг­нітних хвиль є: довжина хвилі Я, м; частота коливання /, Гц; швидкість поширення радіохвиль с, яка практично дорівнює швидкості світла с = 3 • 108 м/с. Ці параметри пов'язані між собою наступною залежністю:

=c/f. (2.39)

Залежно від частоти коливання (довжини хвилі) радіочастотні електромагнітні випромінювання поділяються на низку діапазонів (табл. 2.19).

Таблиця 2.19 Спектр діапазонів електромагнітних випромінювань радіочастот

 

№ зп. Назва діапазону частот Діапазон частот, Гц Діапазон дов­жин хвиль, м Назва діапазону довжин хвиль
  Низькі частоти (НЧ) 3*104— 3*105 104— 103 Довгі (кілометрові)
  Середні частоти (СЧ) 3*105— 3*106 103— 102 Середні (гектаметрові)
  Високі частоти (ВЧ) 3*106— 3*107 102— 10 Короткі (декаметррві)
  Дуже високі частоти (ДВЧ) 3*107— 3*108 10—1 Ультракороткі (метрові)
  Ультрависокі частоти (УВЧ) 3*108— 3*109 1-10-1 Дециметрові
  Надвисокі частоти (НВЧ) 3*109— 3*1010 10-1— 10-2 Сантиметрові
  Надзвичайно високі частоти (НЗВЧ) 3*1010— 3*10" 10-2— 10-3 Міліметрові

Примітка: діапазони частот та довжин хвиль включають верхнє значення параметра і ви­ключають нижнє.

2. Дія електромагнітних полів радіочастот на організм людини, рівні допустимого опромінення.

Ступінь впливу ЕМП на організм людини залежить від діапазону частот, інтен­сивності та тривалості дії, характеру випромінювання (неперервне чи модульоване), режиму опромінення, розміру опромінюваної поверхні тіла, індивідуальних особливо­стей організму.

ЕМП можуть викликати біологічні та функціональні несприятливі ефекти в організмі людини. Функціональні ефекти проявляються у передчасній втомлюва­ності, частих болях голови, погіршенні сну, порушеннях центральної нервової (ЦНС) та серцево-судинної систем. При систематичному опроміненні ЕМП спостерігаються зміни кров'яного тиску, сповільнення пульсу, нервово-психічні захворювання, деякі трофічні явища (випадання волосся, ламкість нігтів та ін.). Сучасні дослідження вказують на те, що радіочастотне випромінювання, впливаючи на ЦНС, є вагомим стрес-чинником.

Біологічні несприятливі ефекти впливу ЕМП проявляються у тепловій та нетеп-ловій дії. Нині достатньо вивченою можна вважати лише теплову дію ЕМП, яка при­зводить до підвищення температури тіла та місцевого вибіркового нагрівання органів та тканин організму внаслідок переходу електромагнітної енергії у теплову. Таке нагрі­вання особливо небезпечне для органів із слабкою терморегуляцією (головний мозок, око, нирки, шлунок, кишківник, сім'яники). Наприклад, випромінювання сантиметрового діапазону призводять до появи катаракти, тобто до поступової втрати зору.

Механізм та особливості нетеплової дії ЕМП радіочастотного діапазону ще докінця не з'ясовані. Частково таку дію пояснюють специфічним впливом радіочастотного випромінювання на деякі біофізичні явища: біоелектричну активність, що може при­звести до порушення усталеного протікання хімічних та ферментативних реакцій; віб­рацію субмікроскопічних структур; енергетичне збудження (часто резонансне) на мо­лекулярному рівні, особливо на конкретних частотах у, так званих, «вікнах прозорості».

Змінне ЕМП являє собою сукупність магнітного та електричного полів і поши­рюється в просторі у вигляді електромагнітних хвиль. Основним параметром, що характеризує магнітне та електричне поля є напруженість: H — напруженість маг­нітного поля, А/м; E — напруженість електричного поля, В/м.

Простір навколо джерела ЕМП умовно поділяють на ближню зону (зону індукції) та дальню зону (зону випромінювання). Для оцінки ЕМП у цих зонах використову­ють різні підходи. Ближня зона охоплює простір навколо джерела ЕМП, що має радіус, який приблизно дорівнює 1/6 довжини хвилі. В цій зоні електромагнітна хвиля ще не сформована, тому інтенсивність ЕМП оцінюється окремо напруженістю магнітної та електричної складових поля (в більшій мірі несприятлива дія ЕМП в цій зоні обумовлена електричною складовою). В ближній зоні, зазвичай, знаходяться робочі місці з джерелами електромагнітних випромінювань НЧ, СЧ, ВЧ, ДВЧ. Робочі місця, на яких знаходяться джерела електромагнітних випромінювань з довжиною хвилі меншою ніж 1 м (УВЧ, НВЧ, НЗВЧ) знаходяться практично завжди у дальній зоні, у якій електромагнітна хвиля вже сформувалася. В цій зоні ЕМП оцінюється за кількістю енергії (потужності), що переноситься хвилею у напрямку свого поширен­ня. Для кількісної характеристики цієї енергії застосовують значення поверхневої густини потоку енергії, що визначається в Bm/м2.

Допустимі рівні напруженості ЕМП радіочастотного діапазону відповідно до ГОСТ 12.1.006-84 наведені в табл. 2.20

Таблиця 2.20

Допустимі рівні напруженості електромангнітного поля радіочастотного діапазону

 

 

 

Діапазон частот, Гц Допустимі рівні напруженості ЕМП Допустима поверхнева густина потоку енергії, Bm/ м2
За електричною складовою (Е), В /м За магнітною складовою (H), А/ м
60 кГц до 3 МГц    
3 МГц до ЗО МГц  
30 МГц до 50 МГц   0, 3
50 МГц до 300 МГц  
300 МГц до 300 ГГц  

 

Примітка: одиниці вимірювання частоти: кГц — кілогерц (1 кГц = 103 Гц); МГц — мегагерц (1 МГц = 106 Гц); ГГц — гігагерц (1 ГГц = 109 Гц).

Дотримання допустимих значень ЕМП контролюють шляхом вимірювання на­пруженостей H та E на робочих місцях і в місцях можливого знаходження персоналу, в яких є джерела ЕМП. Контроль необхідно проводити періодично, однак не рідше ніж один раз на рік, а також при введенні в експлуатацію нових чи модернізованих установок з джерелами ЕМП, після їх ремонту, переналагодження, а також при органі­зації нових робочих місць.

 

3. Захист від електромагнітних випромінювань радіочастотного діапазону.

Засоби та заходи захисту від EM випромінювань радіочастотного діапазону поділяються на індивідуальні та колективні. Останні можна підрозділити на організа­ційні, технічні та лікувально-профілактичні. До організаційних заходів колективного захисту належать:

— розміщення об'єктів, які випромінюють ЕМП таким чином, щоб звести до
мінімуму можливе опромінення людей;

— «захист часом» — перебування персоналу в зоні дії ЕМП обмежується
мінімально необхідним для проведення робіт часом;

— «захист відстанню» — віддалення робочих місць на максимально допустиму відстань від джерел ЕМП;

— «захист кількістю» — потужність джерел випромінювання повинна бути
мінімально необхідною;

— виділення зон випромінювання ЕМП відповідними знаками безпеки;

— проведення дозиметричного контролю.

Технічні засоби колективного захисту передбачають:

— екранування джерел випромінювання ЕМП;

— екранування робочих місць;

— дистанційне керування установками, до складу яких входять джерела ЕМП;

— застосування попереджувальної сигналізації.

До лікувально-профілактичних заходів колективного захисту належать:

—попередній та періодичні медогляди;

— надання додаткової оплачуваної відпустки та скорочення тривалості робо­
чої зміни;

— допуск до роботи з джерелами ЕМП осіб, вік яких становить не менше 18 років, а також таких, що не мають протипоказів за станом здоров'я.

Одним із найбільш ефективних технічних засобів захисту від EM випромі­нювань радіочастотного діапазону, що знаходить широке застосування у промисловості є екранування. Для екранів використовуються, головним чином, матеріали з великою електричною провідністю (мідь, латунь, алюміній та його сплави, сталь). Екрани виго­товляються із металевих листів або сіток у вигляді замкнутих камер, шаф чи кожухів, що під'єднуються до системи заземлення. Принцип дії захисних екранів базується на поглинанні енергії випромінювання матеріалом з наступним відведенням в землю, а також на відбиванні її від екрана.

Захист приміщення від впливу зовнішніх ЕМП можна забезпечити шляхом оклеювання стін металізованими шпалерами та встановлення на вікнах метале­вих сіток.

Як засоби індивідуального захисту від EM випромінювань застосовуються халати, комбінезони, захисні окуляри та ін. Матеріалом для халатів та комбінезонів слугує спеціальна радіотехнічна тканина, в структурі якої тонкі металеві нитки утворюють сітку. Для захисту очей використовують спеціальні радіозахисні окуляри ОРЗ-5 (ЗП5-90), на скло яких нанесено тонку прозору плівку напівпровідникового олова.

Тема 12. Випромінювання оптичного діапазону.

1. Класифікація та джерела випромінювань оптичного діапазону.

2. Особливості інфрачервоного (ІЧ) випромінювання, їх нормування, прилади і методи контролю, засоби та заходи захисту.

3. Особливості ультрафіолетового (УФ) випромінювання, їх нормування, прилади і методи контролю, засоби та заходи захисту.

4. Лазерне випромінювання

5. Класифікація лазерів за ступенями небезпечності лазерного випромінювання.

6. Специфіка захисту від лазерного випромінювання.

1. Класифікація та джерела випромінювань оптичного діапазону.

О птичний діапазон охоплює область електромагнітного випромінювання, до складу якої входять ІЧ, видимі (ВВ) та УФ випромінювання. За довжиною хвилі ці випромінювання розподіляються наступним чином: ІЧ – 540 мкм …760 нм,

ВВ – 760…400 нм, УФ – 400…10 нм.

2. Особливості інфрачервоного (ІЧ) випромінювання, їх нормування, засоби та заходи захисту.

ІЧ-випромінювання здійснюють на організм людини, в основному, теплову дію.

Залежно від довжини хвилі ІЧ-випромінювання поділяються на короткохвильові з довжиною хвилі від 0, 76 до 1, 4 мкм та довгохвильові – більше 1, 4 мкм. Саме довжина хвилі значною мірою обумовлює проникну златність ІЧ-випромінювань. Найбільшу проникну здатність мають короткохвильові ІЧ-випромінювання, які впливають на органи та тканини організму людини, що знаходяться на глибині кількох сантиметрів від поверхні тіла. ІЧ промені довгохвильового діапазону затримуються поверхневим шаром шкіри.

Інфрачервоне випромінювання, що потрапляє на тіло людини, впливає, перш за все, на незахищені його ділянки (обличчя, руки, шию, груди, очі). Знаходження людини протягом тривалого періоду часу в зоні інфрачервоного випромінювання значної потужності, як і при дії високих температур, впливає на центральну нервову систему, серцево-судинну систему (збільшується частота серцебиття, змінюється артеріальний тиск, прискорюється дихання), порушує тепловий баланс в організмі, що призводить до посиленого потовиділення, втрати необхідних для організму людини солей. Діючи на очі, інфрачервоне випромінювання викликає помутніння кришталика, опік сітківки, кон'юнктивіти.

 

Нормована допустима густина потоку енергії інфрачервоного випромінювання на робочому місці залежить від ділянки випромінювання.

Для ділянки А нормована густина потоку енергії не повинна перевищувати 100 Вт/м2 при опроміненні 50% тіла і більше.

Для ділянки В - 120 Вт/м2 при опроміненні поверхні тіла в межах 25-50%.

Для ділянки С - 150 Вт/м2, якщо опромінюється не більше 25% поверхні тіла. Нормами передбачено тривалість опромінення, перерв, які залежать від густини потоку опромінення.

Для захисту людини від інфрачервоного випромінювання використовують декілька способів:

1. Захист відстанню. Цей спосіб полягає в тому, що при віддаленні від джерела випромінювання густина потоку енергії зменшується пропорційно відстані до нього.

2. Захист часом передбачає обмеження перебування людини в зоні інфрачервоного випромінювання.

3. Теплоізоляція джерела випромінювання передбачає застосування конструкторських та технологічних рішень, направлених на теплоізоляцію випромінювальної поверхні матеріалами (скловата, цегла), що знижують температуру поверхні випромінювання.

4. Екранування джерела випромінювання полягає у використанні непрозорих або напівпрозорих екранів, які можуть бути відбиваючими або теплопоглинаючими. 5. Для охолодження використовують водяні завіси з водяної плівки.

6. Індивідуальні засоби захисту: спецвзуття, спецодяг, який витримує високі температури і захищає від інфрачервоних випромінювань, який водночас є м'яким і повітронепропускним (брезент, сукно). Для захисту очей використовують спеціальні окуляри зі скельцями жовто-зеленого або синього кольору.

 

3. Особливості ультрафіолетового (УФ) випромінювання, їх нормування, засоби та заходи захисту.

Ультрафіолетовим випромінюванням (УФВ) називають електромагнітні випромінювання в оптичній ділянці з довжиною хвилі в діапазоні 200-380 нм.

Природнім джерелом УФВ є сонце. Штучними джерелами є електричні дуги, лазери, газорозрядні джерела світла.

Генерація ультрафіолетового випромінювання починається при температурі тіла понад 1200 °С, а його інтенсивність зростає з підвищенням температури.

Інтенсивність випромінювання та його електричний спектральний склад залежить від температури поверхні, що є джерелом УФВ, наявності пилу та загазованості повітря.

Вплив УФВ на людину кількісно оцінюється за еритемною дією, тобто в почервонінні шкіри, яке в подальшому (як правило, через 48 годин) призводить до її пігментації (засмаги).

УФВ має незначну проникаючу здатність. Воно затримується верхніми шарами шкіри людини. Ультрафіолетове випромінювання необхідне для нормальної життєдіяльності людини. За тривалої відсутності УФВ в організмі людини розвивається негативне явище, яке отримало назву " світлового голодування".

У той же час тривала дія значних доз УФВ може призвести до ураження очей та шкіри. Тривала дія УФВ довжиною хвилі 200-280 нм може призвести до утворення ракових клітин. УФВ впливає на центральну нервову систему, викликає головний біль, підвищення температури, нервове збудження, зміни у шкірі та крові.

До заходів захисту від УФВ належать конструкторські та технологічні рішення, які або усувають генерацію УФВ, або знижують його рівень. Застосовується екранування джерел УФВ. Екрани можуть бути хімічними (хімічні речовини, які містять інгредієнти, що поглинають УФВ) і фізичними (перепони, які віддзеркалюють або поглинають промені). Ефективним засобом захисту від дії УФВ є одяг, виготовлений зі спеціальних тканин, що затримують УФВ (наприклад, із попліну, бавовни). Для захисту очей використовують окуляри із захисним склом. Руки захищають рукавицями.

 

4.Лазерне випромінювання

Більш широкого застосування в промисловості, науці і медицині знаходять оптичні квантові генератори (ОКГ) - лазери.

Лазери використовують при дефектоскопії матеріалів, в радіоелектронній промисловості, в будівництві, при обробці твердих і надтвердих матеріалів. За їх допомогою здійснюється багатоканальний зв'язок на великих відстанях, лазерна локація, дальномет-рія, швидке опрацювання інформації.

Лазер - це генератор електромагнітних випромінювань оптичного діапазону, робота якого полягає у використанні вимушених випромінювань.

*Принцип дії лазера базується на властивості атома (складної квантової системи) випромінювати фотони при переході із збудженого стану в основний (з меншою енергією).

*Головною особливістю лазерного випромінювання є його чітка спрямованість, що дозволяє на великій відстані від джерела отримати точку світла майже незмінних розмірів з великою концентрацією енергії.

Дія лазерного випромінювання на організм людини має складний характер і обумовлена як безпосередньою дією лазерного випромінювання на тканину, так і вторинними явищами, обумовленими змінами в організмі внаслідок опромінення.

Розрізняють термічну і біологічну дію лазерного випромінювання на тканини, що може призвести до теплової, ударної дії світлового тиску, електрострикції (механічні коливання під дією електричної складової електромагнітного поля), перебудови внутрішньоклітинних структур та інше.

Термічна дія випромінювання лазерів безперервної дії має багато спільного із звичайним нагріванням. При помірній інтенсивності випромінювання на шкірі можуть з'явитися видимі зміни (порушення пігментації, почервоніння) з досить чіткими межами ураженої ділянки, а при інтенсивності випромінювання виникає кратероподібний отвір внаслідок руйнування та випарювання клітинних структур.

Результатом лазерного опромінення, навіть дуже малих доз, можуть бути такі явища, як нестійкість артеріального тиску, порушення серцевого ритму, втома, роздратування, головний біль, підвищена збудженість, порушення сну. Звичайно, такі порушення зворотні і зникають після відпочинку.

Особливо чутливі до дії лазерного випромінювання очі людини. Ураження очей виникає від влучення як прямого, так і відбитого променя лазера, навіть якщо поверхня відбиття не є дзеркальною.

5. Класифікація лазерів за ступенями небезпечності лазерного випромінювання.

Класи небезпеки лазерного випромінення:

1-й клас, не є небезпечним для очей та шкіри

2-й клас. становить небезпеку при опроміненні очей прямим або віддзеркаленим випромінюванням

3-й клас, становить небезпеку при опроміненні очей прямим, віддзеркаленим, а також дифузно віддзеркаленим випромінюванням на відстані 10 см від дифузно віддзеркалюючої поверхні та при опроміненні шкіри прямим або віддзеркаленим випромінюванням

4-й клас, становить небезпеку при опроміненні шкіри дифузно віддзеркаленим випромінюванням на відстані 10 см від цієї поверхні

6. Специфіка захисту від лазерного випромінювання.

Під лазерною безпекою розуміється сукупність організаційних, технічних і санітарно-гігієнічних заходів, які забезпечують безпеку умов праці персоналу при використанні лазерів.

Усі лазери повинні бути марковані знаком лазерної небезпеки.

Установка лазерів дозволяється тільки у спеціально обладнаних приміщеннях. На дверях приміщення, де знаходяться лазери 2, З, 4 класів, повинні бути нанесені знаки лазерної небезпеки.

Лазери 4 класу повинні бути розташовані в окремих приміщеннях. Велике значення має стан приміщення всередині. Всі предмети, за винятком спеціального устаткування, не повинні мати дзеркальної поверхні.

Розташовувати устаткування потрібно так, щоб воно стояло вільно. Для лазерів 2, 3, 4 класів з лицевої сторони пультів і панелей управління необхідно залишати вільний простір шириною 1, 5 м - при однорядовому розташуванні лазерів, і шириною не менше 2м- при дворядовому. Із задніх та бокових сторін лазерів потрібно залишати відстань не менше 1 м.

Керування лазерами 4 класу повинно бути дистанційним, а двері приміщення, де вони знаходяться, повинні мати блокування.

При використанні лазерів 2 та 3 класів необхідно запобігати попаданню випромінювання на робочі місця. Повинні бути передбачені огородження лазерно шкідливої зони, або екранування пучка випромінювання. Для екранів та огорож потрібно вибирати вогнестійкі матеріали, які мають найменший коефіцієнт відбиття на довжину хвилі генерації лазера. Ці матеріали не повинні виділяти токсичні речовини при дії на них лазерного випромінювання.

При експлуатації лазерів 2, 3, 4 класів треба здійснювати періодичний дозиметричний контроль (не менше одного разу на рік), а також додатково в таких випадках: при надходженні в експлуатацію нових лазерів 2-4 класів, при зміні конструкції засобів захисту, при організації нових робочих місць.

 

Тема 13. Іонізуюче випромінювання.

1. Виробничі джерела, іонізуючого випромінювання, класифікація і особливості їх використання.

2. Типові методи та засоби захисту персоналу від іонізуючого випромінювання у виробничих умовах.

 

Д/з: с.158…164, (1); с.172…182, (2).

1. Виробничі джерела, іонізуючого випромінювання, класифікація і особливості їх використання.

Термін " іонізуюче випромінювання" характеризує будь-яке випромінювання, яке прямо або опосередковано викликає іонізацію навколишнього середовища (утворення позитивно та негативно заряджених іонів).

Особливістю іонізуючих випромінювань є те, що всі вони відзначаються високою енергією і викликають зміни в біологічній структурі клітин, які можуть призвести до їх загибелі. На іонізуючі випромінювання не реагують органи чуття людини, що робить їх особливо небезпечними.

Усі джерела іонізуючого випромінювання поділяються на природні та штучні (антропогенні).

Природними джерелами іонізуючих випромінювань є космічні промені, а також радіоактивні речовини, які знаходяться в земній корі.

Штучними джерелами іонізуючих випромінювань є ядерні реактори, прискорювачі заряджених частинок, рентгенівські установки, штучні радіоактивні ізотопи, прилади засобів зв'язку високої напруги тощо. Як природні, так і штучні іонізуючі випромінювання можуть бути електромагнітними (фотонними або квантовими) і корпускулярними.

Рентгенівське випромінювання виникає в результаті зміни стану енергії електронів, що знаходяться на внутрішніх оболонках атомів, і має довжину хвилі (1000 - 1)-10" 12м. Це випромінювання є сукупністю гальмівного та характеристичного випромінювання, енергія фотонів котрих не перевищує 1 МеВ.

Характеристичним називають фотонне випромінювання з дискретним спектром, що виникає при зміні енергетичного стану атома.

Гальмівне випромінювання - це фотонне випромінювання з неперервним спектром, котре виникає при зміні кінетичної енергії заряджених частинок.

Рентгенівські промені проходять тканини людини наскрізь.

Гамма (у)-випромінювання виникають при збудженні ядер атомів або елементарних частинок. Довжина хвилі (1000 - 1)-10 м.

Джерелом у-випромінювання є ядерні вибухи, розпад ядер радіоактивних речовин, вони утворюються також при проходженні швидких заряджених частинок крізь речовину. Завдяки значній енергії, що знаходиться в межах від 0, 001 до 5 МеВ у природних радіоактивних речовин та до 70 МеВ при штучних ядерних реакціях, це випромінювання може іонізувати різні речовини, а також характеризується великою проникаючою здатністю, у-випро-мінювання проникає крізь великі товщі речовини. Поширюється воно зі швидкістю світла і використовується в медицині для стерилізації приміщень, апаратури, продуктів харчування.

Альфа ά -випромінювання - іонізуюче випромінювання, що складається з ά -частинок (ядер гелію), які утворюються при ядерних перетвореннях і рухаються зі швидкістю близько до 20 000 км/с. Енергія ά -частинок - 2-8 МеВ. Вони затримуються аркушем паперу, практично нездатні проникати крізь шкіряний покрив. Тому ά -частинки не несуть серйозної небезпеки доти, доки вони не потраплять всередину організму через відкриту рану або через кишково-шлунковий тракт разом із їжею, ά -частинки проникають у повітря на 10-11 см від джерела, а в біологічних тканинах на 30-40 мкм.

Бета β -випромінювання - це електронне та позитронне іонізуюче випромінювання з безперервним енергетичним спектром, що виникає при ядерних перетвореннях. Швидкість β -частинок близька до швидкості світла. Вони мають меншу іонізуючу і більшу проникаючу здатність у порівнянні з ά -частинками. β -частинки проникають у тканини організму на глибину до 1 -2 см, а в повітрі – на декілька метрів. Вони повністю затримуються шаром ґрунту товщиною 3 см.

Електромагнітне (рентгенівське) випромінювання і потік нейтронів мають дуже

велику проникну здатність, оскільки фотони і нейтрони є електрично нейтральними й не гальмуються електричним і магнітним полями електронних часток середовища.

Допустимі дози іонізуючого випромінювання регламентуються Нормами радіа­ційної безпеки України (НРБУ-97). Згідно з цим нормативним документом визна­чені наступні категорії опромінюваних осіб:

— категорія А — особи, що постійно чи тимчасово працюють з джерелами
іонізуючого випромінювання;

— категорія Б — обмежена частина населення (особи, що не працюють безпо­
середньо з джерелами випромінювання, але за умовами проживання або розташуван­ня робочих місць можуть підлягати опроміненню);

— категорія В — населення області, країни.

За ступенем чутливості до іонізуючого випромінювання встановлено 3 групи критичних органів (тканин) організму, опромінення яких спричинює найбільшу шко­ду здоров'ю людини:

I — все тіло, статеві органи, червоний кістковий мозок;

II — щитовидна залоза, м'язи, жирова тканина, печінка, нирки, селезінка, шлу­нково-кишковий тракт, легені, кришталик ока;

III — кісткова тканина, шкіра, кисті, передпліччя, лидки, стопи. Залежно від групи критичних органів для осіб категорії А встановлено гранич-ho допустиму дозу (ГДД) за рік, а для осіб категорії Б — границю дози (ГД) за рік (табл.2.18)

Дози опромінення для різних груп критичних органів осіб категорії А та Б, мЗв/рік

Таблиця 2.18

Група критичних органів Гранично допустима доза для осіб категорії А Границя дози для осіб категорії Б
І    
II    
III   ЗО

Еквівалентна доза H (бер), накопичення в критичному органі за час T (років) від початку професійної роботи, не повинна перевищувати значень, що визначаються за формулою:

H = ГДД • T ( 2.37)

Для населення (категорії В) доза опромінення не регламентується, оскільки пе­редбачається, що їх опромінення відбувається в основному за рахунок природного фону та рентгенодіагностики, дози яких незначні і не можуть викликати в організмі відчутних несприятливих змін.

 

2. Типові методи та засоби захисту персоналу від іонізуючого випромінювання у виробничих умовах.

Умови безпеки при використанні радіоактивних ізотопів у промисловості пе­редбачають розробку комплексу захисних заходів та засобів не лише стосовно осіб, які безпосередньо працюють з радіоактивними речовинами, але й тих, хто знаходиться у суміжних приміщеннях, а також населення, що проживає поруч з небезпечним підпри­ємством (об'єктом). Засоби та заходи захисту від іонізуючих випромінювань підрозді­ляються на: організаційні, технічні, санітарно-гігієнічні та лікувально-профілактичні.

Організаційні заходи від іонізуючих випромінювань передбачають забезпечен­ня виконання вимог норм радіаційної безпеки. Приміщення, які призначені для роботи з радіоактивними ізотопами повинні бути ізольовані від інших і мати спеці­альне оброблення стін, стелі, підлоги. Відкриті джерела випромінювання і всі предмети, які опромінюються повинні знаходитись в обмеженій зоні, перебування в якій пер­соналу дозволяється у виняткових випадках, та й то короткочасно. На контейнерах, устаткуванні, дверях приміщень та інших об'єктах наноситься попереджувальний знак радіаційної небезпеки.

На підприємствах складаються та затверджуються інструкції з охорони праці, у яких вказано порядок та правила безпечного проведення робіт. Для проведення робіт необхідно, за можливістю, вибирати якнайменшу достатню кількість ізотопів («захист кількістю»). Застосування приладів більшої точності дає можливість використовува­ти ізотопи, з меншою активністю («захист якістю»). Необхідно також організувати дозиметричний контроль та своєчасне збирання і видалення радіоактивних відходів із приміщень у спеціальних контейнерах.

До технічних заходів та засобів захисту від іонізуючого випромінювання нале­жать: застосування автоматизованого устаткування з дистанційним керуванням; вико­ристання витяжних шаф, камер, боксів, що оснащені спеціальними маніпуляторами, які копіюють рухи рук людини; встановлення захисних екранів.

Санітарно-гігіенічні заходи передбачають: забезпечення чистоти приміщень, включаючи щоденне вологе прибирання; улаштування припливно-витяжної вен­тиляції з щонайменше 5-кратним повітрообміном; дотримання норм особистої гігієни.

До лікувально-профілактичних заходів належать: попередній та періодичні медогляди осіб, які працюють з радіоактивними речовинами; встановлення раціональ­них режимів праці та відпочинку; використання радіопротекторів — хімічних речовин, що підвищують стійкість організму до іонізуючого опромінення.

Захист працівника від негативного впливу джерела зовнішнього іонізуючого випромінювання досягається шляхом:

— зниження потужності джерела випромінювання до мінімально необхідної
величини («захист кількістю»);

— збільшення відстані між джерелом випромінювання та працівником («захист відстанню»);

— зменшення тривалості роботи в зоні випромінювання («захист часом»);

— встановлення між джерелом випромінювання та працівником захисного
екрана («захист екраном»).

Захисні екрани мають різну конструкцію і можуть бути стаціонарними, пересув­ними, розбірними та настільними. Вибір матеріалу для екрана та його товщини зале­жить від виду іонізуючого випромінювання, його рівня та тривалості роботи.

Для захисту від альфа-випромінювання немає необхідності розраховувати тов­щину екрана, оскільки завдяки малій проникній здатності цього випромінювання шар повітря в кілька сантиметрів, гумові рукавички вже забезпечують достатній захист.

Екран для захисту від бета-випромінювання виготовляють із матеріалів з неве­ликою атомною масою (плексиглаз, алюміній, скло) для запобігання утворення галь­мівного випромінювання. Досить ефективними є двошарові екрани: з боку джерела випромінювання розташовують матеріал з малою атомною масою товщиною, що до­рівнює довжині пробігу бета-частинок, а за ним — з більшою атомною масою (для поглинання гальмівного випромінювання).

Товщина екрана d, cm

Рис. 2.39. Монограма для визна­чення товщини захисного екрана від гамма-випромінювання радія (*— для бетону d множиться на 4)

 

Для захисту від гамма-випромінювання, яке характеризується значною проникною здатністю, застосовуються екрани із матеріалів, що мають велику атомну масу (свинець, чавун, бетон, бари-тобетон). Товщину захисного екрана від гамма-випромінювання d (cm) наближено можна ви­значити за формулою:

dy = lnk/IY (2.38)

де IY — коефіцієнт лінійного послаблення;

k — кратність послаблення (відношення дози випромінювання без захисту до гранично допустимої дози).

На практиці для визначення товщини захис­ного екрана часто використовують спеціальні таб­лиці чи монограми (рис. 2.39).

Захист від внутрішнього опромінення дося­гається шляхом виключення безпосереднього ко­нтакту з радіоактивними речовинами у відкрито­му вигляді та запобігання потраплянню їх у повітря робочої зони.

При роботі з радіоактивними речовинами важливе значення має застосування засобів індивідуального захисту (3І3), які запобігають потраплянню радіоактивних забруднень на шкіру та всередину організму, а також захищають від альфа — та, при можливості, від бета-випромінювань.

До 3І3 від іонізуючих випромінювань належать: халати, костюми, пневмокос-тюми, шапочки, гумові рукавички, тапочки, бахіли засоби захисту органів дихання та ін. Застосування тих чи інших 3І3 залежить від виду і класу робіт. Так при ремонтних і аварійних роботах застосовуються 3І3 короткочасного використання — ізолю­вальні костюми (пневмокостюми) шлангові чи з автономним джерелом живлення повітрям.

 

Тема 14. Санітарно-гігієнічні вимоги до планування і розміщування виробничих і допоміжних приміщень.

1. Основні санітарно-гігієнічні вимоги до розміщення підприємства та планування його території.

2. Основні вимоги до виробничих будівель та споруд.

3. Основні вимоги до допоміжних приміщень.

4. Основні вимоги до каналізації та водопостачання.

Д/з: с.184…188(1)

1. Основні санітарно-гігієнічні вимоги до розміщення підприємства та планування його території.

Створення здорових та безпечних умов праці починається з правильного вибору майданчика для розміщення підприємства та раціонального розташування на ньому виробничих, допоміжних та інших будівель і споруд.

Вибираючи майданчик для будівництва підприємства, треба враховувати: аерокліматичну характеристику та рельєф місцевості, умови туманоутворення та розсіювання в атмосфері промислових викидів. Не можна розміщувати підприємства поблизу джерел водопостачання; на ділянках, забруднених органічними та радіоактивними відходами; в місцях можливих підтоплень тощо.

Вирішуючи питання зонування (умовного поділу території за функціональним використанням) великого значення слід надавати переважаючому напрямку вітрів та рельєфу місцевості. Як правило, виробничу зону розташовують з підвітряного боку відносно підсобної та інших зон.

При розташуванні будівель відносно сторін світу необхідно прагнути до створення сприятливих умов для природного освітлення. Відстань між будівлями повинна бути не менше найбільшої висоти однієї з протилежних будівель (щоб вони не затіняли одна одну).

Згідно з Державними санітарними правилами планування та забудови населених пунктів підприємства, їх окремі будівлі та споруди з технологічними процесами, що є джерелами забруднення навколишнього середовища хімічними, фізичними чи біологічними факторами, при неможливості створення безвідходних технологій повинні відокремлюватись від житлової забудови санітарно-захисними зонами (СЗЗ).

Встановлені такі розміри санітарно-захисних зон відповідно до класу шкідливості підприємств: І клас — 1000 м, II клас — 500 м, III клас — 300 м, IV клас — 100 м, V клас — 50 м.

***До І, II та ІІІ класу відносяться в основному підприємства хімічної та металургійної промисловості, деякі підприємства по видобутку руди, виробництву будівельних матеріалів.

До IV класу, поряд з підприємствами хімічної та металургійної промисловості, відносяться підприємства металооброблювальної промисловості з чавунним (в кількості до 10000 тон/рік) та кольоровим (в кількості до 100 тон/рік) литвом, ряд підприємств по виробництву будівельних матеріалів, обробці деревини, багато підприємств текстильної, легкої, харчової промисловості.

 

До V класу, крім деяких виробництв хімічної та металургійної промисловості, відносяться підприємства металооброблювальної промисловості з термічною обробкою без ливарних процесів, великі друкарні, меблеві фабрики.

Санітарно-захисні зони повинні бути озеленені, адже саме тоді вони повною мірою можуть виконувати роль захисних бар'єрів від виробничого пилу, газів, шуму.

Велике значення з санітарно-гігієнічної точки зору має благоустрій території, що вимагає озеленення, обладнання тротуарів, майданчиків для відпочинку, занять спортом та ін. Озеленені ділянки повинні складати не менше 10... 15% загальної площі підприємства.

Для збирання та зберігання виробничих відходів потрібно відвести спеціальні ділянки з огородженням та зручним під'їздом.

 

2. Основні вимоги до виробничих будівель та споруд.

При плануванні виробничих приміщень необхідно враховувати санітарну характеристику виробничих процесів, дотримуватись норм корисної площі для працюючих, а також нормативів площ для розташування устаткування і необхідної ширини проходів, що забезпечують безпечну роботу та зручне обслуговування устаткування.

Об'єм виробничих приміщень на одного працівника згідно з санітарними нормами повинен складати не менше 15 м3, а площа приміщень — не менше 4, 5м2.

***Не можна розташовувати нешкідливі цехи та дільниці (наприклад, механоскладальні, інструментальні, ЕОМ тощо), а також конторські приміщення над шкідливими, оскільки при відкриванні вікон гази та пари можуть проникати в ці приміщення.

***Приміщення, де розташовані електрощитове, вентиляційне, компресорне та інші види обладнання підвищеної небезпеки повинні бути постійно зачиненими на ключ, з тим, щоб в них не потрапили сторонні працівники.

Ширина основних проходів всередині цехів та дільниць повинна бути не менше 1, 5 м, а ширина проїздів — 2, 5 м.

*** Двері та ворота, що ведуть безпосередньо на двір, необхідно обладнати тамбурами або повітряними (тепловими) завісами.

Висота виробничих приміщень має бути не менше 3, 2 м, а для приміщень енергетичного та складського господарства — 3 м. Відстань від підлоги до конструктивних елементів перекриття — 2, 6 м. Галереї, містки, сходи і майданчики повинні бути завширшки не менше 1 м і загороджені поруччями висотою 1 м і внизу повинні мати бортики висотою 0, 2 м.

Ширина виходів з приміщень має бути не меншою 1 м, висота — 2, 2 м. При русі транспорту через двері їх ширина повинна бути на 0, 8 м більше з обох боків габариту транспорту.

*** Підлоги виробничих приміщень повинні бути зносостійкими, теплими, неслизькими, щільними, легко очищуватись, а в деяких цехах та дільницях — волого-, кислото- та вогнестійкими. Через підлогу в інші приміщення не повинні проникати вода, мастила, шкідливі речовини, гази.

 

3. Основні вимоги до допоміжних приміщень.

До складу будь-якого підприємства (залежно від масштабу) повинні входити допоміжні приміщення, які поділяються на п'ять груп:

- санітарно-побутові (гардеробні, душові, умивальні, вбиральні, кімнати особистої гігієни жінок, відпочинку, паління та ін.);

- медичні (медпункти, поліклініки, профілакторії);

- громадського харчування (їдальні, буфети, кімнати для прийняття їжі);

- культурного обслуговування (бібліотеки, зали засідань, спортзали);

- адміністративні (заводоуправління, цехові контори) та конструкторські бюро.

*** Допоміжні приміщення різного призначення, як правило, розташовують разом, в одній будівлі та в місцях з найменшим впливом шуму, вібрації та інших шкідливих факторів.

*** Санітарно-побутові приміщення необхідно розташовувати з максимальним наближенням до робочих місць, щоб не було зустрічних потоків людей, а також переходів через виробничі приміщення зі шкідливими виділеннями, неопалювані частини будівлі та відкриті простори.

Розташування, розміри, обробка тощо допоміжних приміщень обумовлюються цілою низкою санітарних вимог. Наприклад, вбиральні розташовують, як правило, на кожному поверсі на відстані не більше 75 м від найбільш віддаленого робочого місця, а душові слід влаштовувати в кімнатах, суміжних з гардеробними біля внутрішніх стін.

 

4. Основні вимоги до каналізації та водопостачання.

Виробничі приміщення повинні бути обладнані системами виробничого, протипожежного та господарсько-питного водопроводів, господарсько-побутовою та виробничою каналізацією. Виключення складають невеликі виробництва (з кількістю до 25 чоловік в зміну), що розміщені в районах без центральної системи водопроводу та каналізації.

При проектуванні систем водопостачання та каналізації необхідно впроваджувати найбільш прогресивну технологію і устаткування для підготовки та подачі води, відведення та очистки промислових стоків, забезпечувати найменшу забрудненість стічних вод, можливість утилізації та використання відходів виробництва.

Норма витрат води на пиття та побутові потреби для цехів зі значним надлишком тепла на одну людину в одну зміну повинна складати 45 л, а в інших цехах та відділеннях — 25 л.

В проходах між цехами, вестибюлях, приміщеннях для відпочинку необхідно передбачати фонтанчики чи установки з газованою водою. В гарячих цехах повинні бути передбачені місця площею 2—3 м2 для установок з охолодженою підсоленою газованою водою (5 г солі на 1 л води).

Відстань від найбільш віддаленого робочого місця до пристроїв питного водопостачання не повинна перевищувати 75 м. Не допускається з'єднання мереж господарсько-питного водопроводу з мережами спеціальних виробничих та протипожежних водопроводів, що подають не питну воду.

 

Всі стічні води спускаються в міську каналізаційну систему. Зливання в каналізаційну мережу відпрацьованих розчинів кислот, лугів, електролітів та інших хімічних речовин допускається лише після їх нейтралізації та очищення. Забороняється зливати в каналізаційну мережу толуол, ацетон, бензин, мінеральні мастила.

На дільницях шліфування, полірування та при застосуванні мокрих способів обробки пилових матеріалів стічні води повинні надходити до системи загальної каналізації через відстійники. На окремих дільницях каналізаційних мереж необхідно розташовувати пристрої для вловлювання нафтопродуктів.

Розділ ІІІ

Основи техніки безпеки

Тема 15. Загальні вимоги безпеки

1. Загальні вимоги безпеки до технологічного обладнання та процесів.

Д/з: с.191…193, (1)

 

Безпека при експлуатації систем під тиском.

2. Причини аварій і нещасних випадків при експлуатації систем, що працюють під тиском.

3. Реєстрація і технічне опосвічення.

4. Контрольно-вимірювальні прилади.

5. Експлуатація парових і водогрійних котлів.

6.Правила експлуатації компресорів. Вимоги безпеки до встановлення

компресорів.

7.Безпека під час експлуатації балонів і установок кріогенної техніки

Д/з: с.193…203, [1]; с.171…177, [3]­­­­­; с.284…290, [2]­­­­­.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.