Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Элементы систем электроснабжения






После того как выявлены источники гармоник и определены их уровни, необходимо выяснить характер влияния гармоник на рабо­ту электрооборудования. Все элементы систем электроснабжения должны быть рассмотрены с точки зрения их чувствительности к гармоникам. На основе этого рассмотрения затем вырабатываются рекомендации по допустимым уровням гармоник в сетях.

Основными формами воздействия высших гармоник на систе­мы электроснабжения являются: увеличение токов и напряжений гармоник вследствие параллельного и последовательного резонансов; снижение эффективности процессов генерации, передачи и использования электроэнергии; старение изоляции электрообору­дования и сокращение вследствие этого срока его службы; ложная работа оборудования.

Резонансы. Наличие в сетях конденсаторов, используемых для компенсации реактивной мощности, может привести к местным резонансам, которые, в свою очередь, могут вызвать черезмерное увеличение тока в конденсаторах и выход их из строя.

Параллельный резонанс возникает вследствие высокого сопротивления гармоникам тока на резонансной частоте. Так как большинство гармоник генерируется источниками тока, то это вызывает увеличение напряжения гармоник и большие их токи в каждой из параллельных ветвей.

Параллельные резонансы могут возникать в различных услови­ях, простейшие из них соответствуют случаю присоединения кон­денсаторов к тем же шинам, к каким присоединен источник гар­моник. Резонанс в этом случае возникает между источником гар­моник и конденсаторами.

Предполагая сопротивление источника полностью индуктив­ным, резонансную частоту определим по формуле

(6.1)

где - мощность силовых конденсаторов и емкости питающей сети; - мощность короткого замыкания в точке общего присоединения (Рис. 6.1.).

 

Рис 6.1. Параллельный резонанс:

1, 3 – нагрузки; 2- источник гармоник; ТОП – точка общего присоединения.

 

Для того чтобы определить условия резонанса в конкретном случае, необходимо измерить токи гармоник в ветвях каждой на­грузки и ветви питания, а также напряжение гармоник на шинах. Если ток, текущий от шин в энергосистему, мал, а напряжение велико, это говорит о наличии резонанса между и , .

Последовательный резонанс иллюстрируется рис. 6.2. Данный вид резонанса возникает при наличии искажений на шинах источника питания. На высо­ких частотах сопротивление нагрузки может не учитываться, в то время как сопротивление конденсаторов резко снижается. Резо­нансную частоту этой цепи определяют по формуле

(6.2.)

где - мощность силовых конденсаторов; - мощность трансформатора; - напряжение короткого замыкания трансформатора; - мощность нагрузки.

Рис. 6.2. Схема последовательного резонанса

К – конденсатор, Т – трансформатор, Н – активная нагрузка

 

При последовательном резонансе большой ток гармоники мо­жет течь через конденсатор при относительно небольшом напря­жении гармоники. Фактическое значение тока определяется доб­ротностью контура. Обычно она составляет порядка 5 на частоте 500 Гц.

Влияние резонансов на системы. Резонансы в системах электроснабжения обычно рассматриваются применительно к конденсаторам, и в частности к силовым конденсаторам. При превышении гармониками тока уровней, предельно допустимых для конденса­торов, последние не ухудшают свою работу, однако через некото­рое время выходят из строя.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.