Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Механический (систематический) отбор




Механическийотбор заключается в том, что составляется список единиц генеральной совокупности и в зависимости от числа отбираемых единиц устанавливается шаг отбора, т.е. через какой интервал следует брать для наблюдения единицы. Например, в простейшем случае, при 10%–м отборе, отбирается каждая десятая единица по этому списку, т.е. если первой взята единица за № 1, то следующими отбираются 11–я, 21–я и т.д. В такой последовательности производится отбор, если единицы совокупности расположены в списке без учета их «рангов», т.е. значимости по изучаемым признакам. Начало отбора в этом случае не имеет значения, его можно начать в приведенном примере от любой единицы из первого десятка. При расположении единиц совокупности в ранжированном порядке за начало отбора должна быть принята середина интервала (шага отбора) во избежание систематической ошибки выборки.

При достаточно большой совокупности этот способ отбора близок к собственно случайному, при условии, что применяемый список не составлен таким образом, чтобы какие-то единицы совокупности имели больше шансов попасть в выборку.

Механический способ отбора используется тогда, когда мы хотим исследовать сравнительно большую совокупность, каждый член которой занесен в единый список, такой, как, например, телефонная книга, список зарегистрированных избирателей и т.п. Процедура выглядит следующим образом.

Подсчитайте (или оцените) количество объектов в совокупности и разделите его на желательное количество объектов в выборке. Если обозначить результат через k, то фактически можно сказать, что мы хотим выбрать один из каждых k объектов, или, говоря по-другому, каждый k-й объект.

Предположим, что из совокупности в 10 000 единиц, мы хотим сформировать выборку размером в 500 единиц. Чтобы отобрать механическую выборку:

1. Мы делим количество объектов в совокупности на желательный размер выборки, чтобы определить число k (в данном случае k = 10 000:500 = 20).

2. С помощью таблицы случайных чисел мы выбираем номер объекта между 1 и k (в нашем примере между 1 и 20) для включения в нашу выборку.

3. Мы движемся по списку документов, выбирая каждый k-й (двадцатый) объект.

Таким образом, если k равно 20, и мы пользуемся таблицей случайных чисел, представленной в приложении 1, начиная с верхнего левого угла таблицы, рассматривая двузначные числа (k в данном случае находится между 10 и 99) и, используя только те элементы таблицы, которые соответствуют реальным номерам объектов (т.е. только те, которые находятся между 01 и 20), первым выбранным объектом будет 10. Мы, таким образом, включаем в нашу выборку объекты 10, 30 (10+k), 50 (10+2k), 70 (10+3k) и т.д., и так вплоть до объекта 9900 (10+499k). Эту верхнюю границу выборки можно задать в виде общей формулы j+(n–1)*k, где j – первое случайное число, a n – желаемый объем выборки.



Техника формирования механической выборки по сравнению с формированием собственно-случайной выборки имеет два важных преимущества: ее удобно применять по отношению к большим совокупностям, отвечающим условию наличия единого списка, и у нее много потенциальных возможностей использования. Тем не менее, применяя эту процедуру, мы должны иметь в виду одну очень важную ее особенность. Поскольку механическая выборка менее случайна, чем собственно-случайная, в результате может быть получена менее репрезентативная выборка.

Прежде всего, вспомним, что случайная выборка – это выборка, в которой каждый конкретный объект икаждое возможное сочетание из п объектов имеют равную вероятность быть выбранными. В механической выборке выполняется только одно из этих условий. Поскольку формирование такой выборки начинается с выбора по таблице случайных чисел первого объекта, любой объект из совокупности, в конечном счете, имеет равные возможности войти в выборку (хотя и не обязательно при первой попытке, так как она осуществляется в пределах от 1 до k). Однако поскольку далее мы выбираем лишь объекты, отстоящие на k номеров один от другого, не всякое возможное сочетание оказывается допустимым. Так, в примере при k =20 в качестве первого можно выбрать любой объект от 1 до 20, но, как только выбран объект с номером 10, мы уже не можем включить объекты с номерами 9, 14, 237 и 5 724 просто потому, что номера этих объектов не отличаются от 10 на целое число k. Следовательно, механическая выборка – это в лучшем случае лишь приближение к истинной случайной выборке.



Данное наблюдение особенно важно, когда список, из которого производится выборка, характеризуется систематической направленностью. Для алфавитных и хронологических списков это обычно не существенно, однако для других типов списков может оказаться важным. Например, мы хотим измерить уровень умственных способностей в выборке, состоящей из учеников школы, в каждом классе которой 20 детей. В школе 100 классов, т.е. всего 2000 учеников. В ответ на нашу просьбу директор предоставляет список всех учеников школы, из которого мы собираемся извлечь выборку объемом в 100 человек. Однако перед нами не алфавитный список, а последовательность списков отдельных классов. Более того, список каждого класса дан не в алфавитном порядке, а соответствует положению, занимаемому учеником в классе: лучшие ученики идут вначале, и списки продолжаются в порядке убывания успехов. При таком положении дел, если выбирать каждого двадцатого (2000:100), начиная со случайным образом выбранного объекта под номером 1, мы получим выборку, состоящую из 100 лучших (и, возможно, самых умных) учеников школы. Если случайным образом будет выбран объект 10, в выборку попадут одни середняки. А если начать с объекта 20, то мы выберем лишь самых плохих учеников школы. Иными словами, внутренняя направленность, характеризующая список, на котором основана наша выборка, окажется причиной получения нерепрезентативной выборки. В конце концов все это приведет к тому, что мы либо не сможем обобщить наши результаты на генеральную совокупность, либо (если возникшая ситуация останется незамеченной) придем к потенциально неверным выводам, к систематической ошибке, и, следовательно, - к смещению в оценках.

Расчет предельной и стандартной ошибок выборки, а также необходимой численности выборки при механическом способе отбора осуществляется по тем же формулам, что и при собственно-случайном отборе. Это приводит к некоторому завышению величины ошибок, но зато повышает надежность оценок.

 



.

mylektsii.ru - Мои Лекции - 2015-2019 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал