Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Собственно–случайный отбор






Собственно–случайный отбор состоит в отборе единиц из всей генеральной совокупности в целом посредством жеребьевки или на основании таблиц случайных чисел.

Жеребьевка состоит в том, что на каждую единицу отбора составляется карточка, которой присуждается порядковый номер. После тщательного перемешивания по очереди извлекаются карточки, пока не будет отобрано требуемое число единиц.

Случайными числами называются ряды чисел, являющихся реализациями последовательности взаимно независимых и одинаково распределенных случайных величин. Эти последовательности чисел получаются либо с помощью физических генераторов (подбрасывание кубиков с нанесенными на их сторонами цифрами; вытягиванием из урны карточек с написанными на них цифрами, преобразованием случайных сигналов и использованием др. физико–технических процессов), либо с помощью программных генераторов (аналитическим методом с помощью программ для ЭВМ).

Числа, являющиеся результатами соответствующей вычислительной процедуры, называются псевдослучайными числами. Последовательность псевдослучайных чисел носит детерминированный характер, но в определенных границах она удовлетворяет свойствам равномерного распределения и свойству случайности.

Случайные числа могут быть выбраны по таблице случайных чисел. Существует несколько таблиц случайных чисел, одна из них приведена в приложении 1.

Данная таблица содержит 2500 случайных чисел, объединенных для удобства пользования таблицей в 500 блоков по 5 значений.

Таблица случайных чисел может использоваться несколькими разными способами, и в каждом случае необходимо принять три решения. Во-первых, следует решить, сколько разрядов мы будем использовать, во-вторых, необходимо разработать решающее правило дляих использования; в-третьих, нужно выбрать исходную точку и способ прохождения по таблице.

Первое решение определяется просто количеством объектов в совокупности. Если совокупность состоит из менее чем 10 объектов, используются однозначные числа; при числе объектов от 10 до 99 – двузначные числа; от 100 до 999 – трехзначные и т.д. В каждом случае мы должны позаботиться о том, чтобы каждый перенумерованный объект имел возможность быть выбранным.

Как только это сделано, мы должны разработать правило, которое бы связывало числа в таблице с номерами наших объектов. Здесь существуют две возможности. Самый простой способ (хотя и не обязательно самый правильный) – использовать лишь те числа, которые попадают в число номеров, приписанных нашим объектам. Так, если мы имеем совокупность, состоящую из 250 объектов (и, таким образом, используем трехзначные числа), и решаем начать с левого верхнего угла таблицы и двигаться вниз по столбцам, мы включим в нашу выборку объекты с номерами 100, 084 и 128 и пропустим числа 375 и 990, не соответствующие нашим объектам. Этот процесс будет продолжаться до тех пор, пока не будет определено число объектов, нужных для нашей выборки.

Более трудоемкая, однако, методически более правильная процедура основывается на положении, что для сохранения случайности, характерной для таблицы, должно быть использовано каждое число данной размерности (например, каждое трехзначное число). Следуя данной логике и вновь имея дело с совокупностью из 250 объектов, мы должны разбить область трехзначных чисел от 000 до 999 на 250 одинаковых промежутков. Поскольку таких чисел 1000, мы делим 1000 на 250 и находим, что каждая из частей содержит четыре числа. Таким образом, числа таблицы от 000 до 003 будут соответствовать объекту 1, от 004 до 007 – объекту 2 и т.д. Теперь, чтобы установить, какой номер объекта соответствует числу таблицы, следует разделить трехзначное числоиз таблицы и округлить до ближайшего целого числа. С помощью данного метода тот же фрагмент таблицы, которым мы пользовались раньше, позволит нам включить в выборку объекты 025 (100: 4), 093 (375: 4, округлено в меньшую сторону), 021 (084: 4), 247 (990: 4, округлено в меньшую сторону) и 032 (128: 4) и не пропустить ни одного числа из таблицы.

И, наконец, мы должны выбрать в таблице исходную точку и способ прохождения. Исходной точкой может быть верхний левый угол (как в предыдущем примере), нижний правый угол, левый край второй строки или любое другое место. Этот выбор абсолютно произволен. Однако, работая с таблицей, мы должны действовать систематически. Мы могли бы взять три первых знака из каждой пятизначной последовательности, три средних знака, три последних знака или даже первый, второй и четвертый знаки. (Из первой пятизначной последовательности с помощью этих различных процедур получаются, соответственно, числа 100, 009, 097 и 109.) Мы могли бы применить эти процедуры в направлении справа налево, получив 790, 900, 001 и 791. Мы могли бы идти вдоль рядов, рассматривая поочередно каждую следующую цифру и игнорируя разбиение на пятерки (для первого ряда будут получены числа 100, 973, 253, 376 и 520). Мы могли бы иметь дело лишь с каждой третьей группой цифр (например, с 10097, 99019, 04805, 99970). Существует множество самых разнообразных возможностей, и каждая следующая ничуть не хуже предыдущей. Однако как только мы приняли решение о том или ином способе работы, мы должны систематически следовать ему, чтобы в максимальной степени соблюдать случайность элементов в таблице.

Средняя ошибка определяется как среднее квадратическое отклонение средней величины в генеральной совокупности (средней генеральной)

В математической статистике доказывается, что величина средней квадратической (стандартной) ошибки простой случайной повторной выборки может быть определена по формуле

где - дисперсия признака в генеральной совокупности.

Дисперсия суммы независимых величин равна сумме дисперсий слагаемых

Если все величины Xi имеют одинаковую дисперсию, то

Тогда дисперсия средней

Тогда средняя ошибка при определении средней

Между дисперсиями в генеральной и выборочной совокупностях существует следующее соотношение:

где – дисперсия признака в выборке.

Если n достаточно велико, то близко к единице и дисперсию в генеральной совокупности можно заменить на дисперсию в выборке.

Тогда средняя ошибка средней в генеральной совокупности может быть как среднее квадратическое отклонение средней величины в выборочной совокупности (средней выборочной).

Средняя ошибка выборочной средней

Значения средней ошибки выборки определяются по формуле

 

где – дисперсия в генеральной совокупности.

Между дисперсиями в генеральной и выборочной совокупностях существует следующее соотношение:

где – дисперсия в выборке.

Если n достаточно велико, то близко к единице и дисперсию в генеральной совокупности можно заменить на дисперсию в выборке.

При повторном отборе средняя ошибка определяется следующим образом:

где – дисперсия количественного признака x.

При бесповторном оборе с каждой отобранной единицей вероятность отбора оставшихся единиц повышается, при этом стандартная (средняя) ошибка выборочной средней уменьшается по сравнению с повторным отбором. Ее расчет имеет для собственно-случайного бесповторного отбора следующий вид:

 

При достаточно большом объеме совокупности N можно воспользоваться формулой

Средняя ошибка выборочной доли определяется по формуле

Или, как было доказано выше,

где – дисперсия доли в генеральной совокупности (дисперсия генеральной доли);

– дисперсия доли в выборке (дисперсия выборочной доли).

Приведенная формула средней ошибки выборочной доли применяется при повторном отборе.

Для определения дисперсии альтернативного признака допустим, что общее число единиц совокупности равно n. Число единиц, обладающих данным признаком - f, тогда число единиц, не обладающих данным признаком, равно n-f. Ряд распределения качественного (альтернативного) признака:

Таблица 1

Значение переменной Частота повторений
  f n-f
Итого n

Средняя арифметическая такого ряда равна:

то есть равна относительной частоте (частости) появления данного признака, которую можно обозначить через p, тогда

Таким образом, доля единиц, обладающих данным признаком равна p; соответственно доля единиц, не обладающих данным признаком, равна q; p+q =1. Тогда дисперсия альтернативного признака определяется по формуле

Для показателя доли альтернативного признака в выборке (выборочной доли) дисперсия определяется по формуле

При бесповторном отборе численность генеральной совокупности сокращается, поэтому дисперсия умножается на коэффициент

Для случая, когда доля (частость) даже приблизительно неизвестна, можно произвести " грубый" расчет средней ошибки выборки для доли, используя в расчете максимальную величину дисперсии доли, равную 0, 25.

Тогда, для повторного отбора:

- бесповторного отбора:

Таблица 2






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.