Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Примеры решения задач. Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x = A + Bt + Ct3, где А = 2 м, В = 1 м/с






    Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x = A + Bt + Ct3, где А = 2 м, В = 1 м/с, С = - 0, 5 м/с3. Найти координату х, скорость и ускорение точки в момент времени t = 2с.

    Решение. Координату xнайдем, подставив в уравнение движения числовые значения коэффициентов A, B и C и времени t:

    x = (2 + 1× 2 - 0, 5× 23)м = 0.

    Мгновенная скорость относительно оси хесть первая производная от координаты по времени:

    .

    Ускорение точки найдем, взяв первую производную от скорости по времени:

    В момент времени t = 2 с

    = (1 - 3× 0, 5× 22) м/c = - 5 м/c;

    = 6(- 0, 5) × 2 м/с2 = - 6 м/с2.

     

    Пример 2. Тело вращается вокруг неподвижной оси по закону j = A + Bt + Ct2, где A= 10 рад, В = 20 рад/с, С = - 2 рад/с2. Найти полное ускорение точки, находящейся на расстоянии г=0, 1 м от оси вращения, для момента времени t =4 с.

    Решение. Полное ускорение точки, движущейся по кривой линии, может быть найдено как геометрическая сумма тангенциального ускорения , направленного по касательной к траектории, и нормального ускорения , направленного к центру кривизны траектории (рис.1):

    Так как векторы и взаимно перпендикулярны, то модуль ускорения

    (1)

    Модули тангенциального и нормального ускорения точки вращающегося тела выражаются формулами

    где w - модуль угловой скорости тела; e - модуль его углового ускорения.

    Подставляя выражения и в формулу (1), находим

     

     

    . (2)

    Угловую скорость w найдем, взяв первую производную угла поворота по времени:

    В момент времени t = 4 с модуль угловой скорости

    w = [20 + 2(-2)4] рад/с = 4 рад/с.

    Угловое ускорение найдем, взяв первую производную от угловой скорости по времени:

    = 2 C = - 4 рад/с2.

    Подставляя значения w, e и r в формулу (2), получаем

    м/с = 1, 65 м/с2.

    Пример 3. Шар массой m1, движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю e своей кинетической энергии первый шар передал второму?

    Решение. Доля энергии, переданной первым шаром второму, выразится соотношением

    (1)

    где Т1 - кинетическая энергия первого шара до удара; u2 и Т2 - скорость и кинетическая энергия второго шара после удара.

    Как видно из формулы (1), для определения e надо найти u2. Согласно условию задачи импульс системы двух шаров относительно горизонтального направления не изменяется и механическая энергия шаров в другие виды не переходит. Пользуясь этим, найдем:

    (2)

    (3)

    Решим совместно уравнения (2) и (3):

    Подставив это выражение u2 в формулу (1) и сократив на u1 и m1, получим

    Из найденного соотношения видно, что доля переданной энергии зависит только от масс сталкивающихся шаров.

     

    Пример 4. Через блок в виде сплошного диска, имеющего массу m= 80г (рис.2), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1 = 100г и m2 = 200г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

    Решение: Рассмотрим силы, действующие на каждый груз и на блок в отдельности. На каждый груз действуют две силы: сила тяжести и сила упругости (сила натяжения нити). Направим ось х вертикально вниз и напишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эту ось. Для первого груза

    ; (1)

    для второго груза

    (2)

     

    Под действием моментов сил и относительно оси z перпендикулярной плоскости чертежа и направленной за чертеж, блок приобретает угловое ускорение e. Согласно основному уравнению динамики вращательного движения,

    (3)

    где - момент инерции блока (сплошного диска) относительно оси z.

    Согласно третьему закону Ньютона, с учетом невесомости нити и . Воспользовавшись этим подставим в уравнение (3) вместо и выражения и , получив их предварительно из уравнений (1) и (2):

    После сокращения на и перегруппировки членов найдем

    (4)

    Формула (4) позволяет массы m1, m2 и m выразить в граммах, как они даны в условии задачи, а ускорение - в единицах СИ. После подстановки числовых значений в формулу (4) получим

     

    Пример 5. Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости u1, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли (R=6, 37× 106 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.

    Решение. Со стороны Земли на ракету действует сила тяжести, являющаяся потенциальной силой. При неработающем двигателе под действием потенциальной силы механическая энергия ракеты изменяться не будет. Следовательно,

    Т1 + П1 = Т2 + П2, (1)

    где Т1, П1 и Т2, П2 - кинетическая и потенциальная энергии ракеты после выключения двигателя в начальном (у поверхности Земли) и конечном (на расстоянии, равном радиусу Земли) состояниях.

    Согласно определению кинетической энергии,

    Потенциальная энергия ракеты в начальном состоянии

    По мере удаления ракеты от поверхности Земли ее потенциальная энергия возрастает, а кинетическая - убывает. В конечном состоянии кинетическая энергия Т2 станет равной нулю, а потенциальная - достигнет максимального значения:

    Подставляя выражения Т1, П1, Т2 и П2 в (1), получаем

    откуда

    Заметив, что GM/R2=g (g - ускорение свободного падения у поверхности Земли), перепишем эту формулу в виде

    что совпадает с выражением для первой космической скорости.

    Произведем вычисления:

    м/с = 7, 9 км/с.

     

    Пример 6. Платформа в виде сплошного диска радиусом R=1, 5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость u относительно пола помещения будет иметь человек, если он перейдет на край платформы?

    Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа-человек остается постоянной:

    const, (1)

    где Jz - момент инерции платформы с человеком относительно оси z;

    w - угловая скорость платформы.

    Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии а в конечном состоянии .

    С учетом этого равенство (1) примет вид

    (2)

    где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и - к конечному.

    Момент инерции платформы относительно оси z при переходе человека не изменяется: . Момент инерции человека относительно той же оси будет изменяться. Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы)можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека

    Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости (w' = u/R, где u - скорость человека относительно пола):

    После сокращения на R2 и простых преобразований находим скорость

    Произведем вычисления:

    м/с.

     

    Пример 7. Частица массой m = 0, 01 кг совершает гармонические колебания с периодом Т = 2с. Полная энергия колеблющейся частицы Е = 0, 1 мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу.

    Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы:

    где w = 2p/Т. Отсюда амплитуда

    (1)

    Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F = -kx, где k - коэффициент квазиупругой силы; х - смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax, равном амплитуде:

    Fmax = kA. (2)

    Коэффициент k выразим через период колебаний:

    k = mw2 = m× 4p2/T2. (3)

    Подставив выражения (1) и (3) и (2) и произведя упрощения, получим

    Произведем вычисления:

    0, 045 м = 45 мм;

     

    Пример 8. Складываются два колебания одинакового направления, выраженные уравнениями

    где А 1 = 3 см, А 2 = 2 см, t 1 = 1/6 с, t 2 = 1/3 с, Т = 2 с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.

    Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме

    х = A cos (wt+j), получим

    Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту

    .

    Начальные фазы первого и второго колебаний соответственно равны

    Произведем вычисления:

    с-1;

     

    Изобразим векторы А1 и А2. Для этого отложим отрезки длиной А1 = 3 см и А2 = 2 см под углами j1 = 30о и j2 = 60о к оси 0х. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной геометрической сумме амплитуд А1 и А2: А = А1 + А2. Согласно теореме косинусов:

    Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис. 3):

     

     

    Произведем вычисления:

    см = 4, 84 см;

    или j = 0, 735 рад.

    Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде

    где А = 4, 84 см, w = 3, 14 с-1, j = 0, 735 рад.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.