Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! ВВЕДЕНИЕ. Гармоническим называют такое колебательное движение, при котором на тело массы m действует возвращающая сила F
Гармоническим называют такое колебательное движение, при котором на тело массы m действует возвращающая сила F, пропорциональная отклонению x от положения равновесия. На рисунке 13.1. показан пружинный маятник, расположенный горизонтально. Это шарик массой m, прикрепленный к пружине обладающей упругостью k. Если шарик вывести из положения равновесия (растянуть или сжать пружину), то вследствии ее деформации возникает сила упругости, возвращающая шарик в положение равновесия Рис. 13.1. (13.1.) где k – коэффициент возвращающей силы. Знак минус означает противоположность направлений х и F. Эта сила сообщает телу ускорение а и может быть выражена по закону Ньютона: (13.2.) - ускорение. Из формул (13.1.) и (13.2.) получаем дифференциальное уравнение гармонических колебаний (13.3.) Решением этого уравнения является уравнение вида: (13.4.) Здесь А – амплитуда колебаний, j - начальная фаза, (wt+j) – фаза колебаний в момент времени t, w - циклическая частота. Согласно решению уравнению (13.3.) (13.5.) Так как циклическая частота зависит только от свойств колеблющейся системы (массы и упругости), то ее называют собственной циклической частотой системы. Примерно по гармоническому закону происходит движение математического маятника (рис.13.2.), первоначально выведенного из положения равновесия на малый угол a £ 50. Рис.13.2. Напомним, что математическим маятником называется материальная точка, подвешенная на нерастяжимой нити. Действующая на материальную точку массой m сила тяжести Р=mg раскладывается на две взаимно перпендикулярные составляющие, одна из которых F1 растягивает нить, а вторая –F вызывает ускорение в сторону положения равновесия, ее называют возвращающей силой. Она равна Относительно точки подвеса тело совершает вращательное движение; поэтому для вывода уравнения движения надо воспользоваться законом динамики для вращательного движения. Возвращающая сила создает возвращающий момент силы Так как угол a мал, то sina» a (здесь a выражен в радианах). Поэтому (13.7.) Знак (-) указывает, что сила тяжести препятствует отклонению тела на угол a. Этот момент силы вызовет движение шарика с угловым ускорением равным второй производной угла по времени, т.е. (13.8.) где I – момент инерции шарика относительно точки подвеса. (13.9.) Подставив уравнение (13.9.) в уравнение (13.8.) и приравняв правые части полученного уравнения и уравнения (13.7.) получим уравнение движения математического маятника (13.10.) Если сравним его с уравнением (13.3.), то собственная циклическая частота математического маятника будет зависеть от длины и ускорения силы тяжести, т.е. (13.11.) Это значит, что роль массы в этом случае выполняет длина нити, а упругость системы – ускорение силы тяжести. Известно, что период колебаний связан с частотой соотношением: (13.12.) Подставив в уравнение (13.12.) значение w для пружинного маятника или для математического (уравнение (13.11.), получим для математического маятника (13.13.) Это уравнение используют для измерения ускорения силы тяжести с помощью математического маятника. Из уравнения (13.13.) легко определить ускорение свободного падения: (13.14.) Непосредственное измерение длины маятника l не представляется возможным, т.к. центр тяжести лабораторного маятника не совпадает точно с геометрическим центром шарика. Поэтому при определении ускорения силы тяжести наблюдают колебания маятника для различных l и определяют периоды колебаний Т1 и Т2. Тогда g легко выразить через Т1 и Т2 и разность длин маятников. Окончательно имеем: (13.15.)
|