Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метрика простору лінійного функціонального інтервалу. Ширина лінійного функціонального інтервалу.
Якщо у просторі LI(X) ввести метрику, то цим ми зробимо його топологічним простором. Зауваження 1. Нехай 1, M 1 — множини точок кінців інтервалів інтервалу X, на яких графіки нижньої та верхньої обмежуючих функцій l 1(x), 1(x), відповідно, лінійного обмежника L1(X) кожен є відрізком лише однієї якоїсь прямої лінії, а , — множини точок кінців інтервалів інтервалу X такої ж природи лише для нижньої та верхньої обмежуючих функцій l 2(x), 2(x), відпові- дно, лінійного обмежника L2(X). Утворимо множину точок M= M 1 1 M2 2 та множини , M точок граничного лінійного обмежника L(X). Означення 1. Шириною лінійного функціонального інтервалу обмежника L(X) = {X, (x), (x)} називається число , Де множина точок M визначається аналогічно як у зауваженні 1. Очевидно, що якщо L1(X), L2(X) LI(X), то (L1(X) L2(X)) ⇔ ). Означення 2. Функціональною, або параметризованою шириною лінійного інтервального обмежника L(X) {X, l (x), (x)} називаємо невід’ємнозначну функцію , яка при кожному фіксованому значенні аргументу є шириною інтервалу [ l ( ), ( )} ] — перерізу цього лінійного інтервального обмежника при значенні x= . З цього означення та означення 1 випливає, що = (x)- l (x).
|