Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Інтервальний метод Ньютона для розв’язування рівнянь
Припустимо, що – неперервно диференційована функція, що має нуль на інтервалі x, тобто Тоді для будь якої точки з того ж інтервалу в силу теореми про середнє значення: Де 𝜉 – деяка точка між . Ну так, як , звідси слідує: Якщо являється яким-небудь інтервальним розширенням похідної функції на x, то і Означення 1. Для заданої функції f відображення Діє згідно правила: Називається інтервальним оператором Ньютона. Припустимо, на деякий час, що , так що являється кінцевим оператором. Так як, будь який нуль функції на x лежить також і в , то доречно взяти в якості наступного більш точного наближення до розв'язання перетину яке виявиться, принаймні, не гірше x. Далі, якщо , ми можемо надати сенс оператору Ньютона, скориставшись інтервальною арифметикою. В дійсності ця модифікація навіть підсилить інтервальний метод Ньютона, так як ми отримаємо можливість відокремлювати розв'язок один від одного: в результаті виконання кроку інтервального методу Ньютона при , отримаємо, як правило, два непересічних інтервали.
|