Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Описательные статистики






" Истинное" среднее и доверительный интервал. Вероятно, наиболее важной описательной статистикой является среднее. Среднее – очень информативная мера " центрального положения" наблюдаемой переменной, особенно если сообщается ее доверительный интервал. Исследователю нужны такие статистики, которые позволяют сделать вывод относительно популяции в целом. Одной из таких статистик является среднее. Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия (Лекция 7), находится " истинное" (неизвестное) среднее популяции. Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =0.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции. Если вы установить больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он " накрывает" неизвестное среднее популяции, и наоборот. Хорошо известно, например, что чем " неопределенней" прогноз погоды (т.е. шире доверительный интервал), тем вероятнее он будет верным. Заметим, что ширина доверительного интервала зависит от объема или размера выборки, а также от разброса (изменчивости) данных. Увеличение размера выборки делает оценку среднего более надежной. Увеличение разброса наблюдаемых значений уменьшает надежность. Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин. Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок. При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Форма распределения; нормальность. Важным способом " описания" переменной является форма ее распределения, которая показывает, с какой частотой значения переменной попадают в определенные интервалы. Эти интервалы, называемые интервалами группировки, выбираются исследователем. Обычно исследователя интересует, насколько точно распределение можно аппроксимировать нормальным. Простые описательные статистики дают об этом некоторую информацию. Например, если асимметрия (показывающая отклонение распределения от симметричного) существенно отличается от 0, то распределение несимметрично, в то время как нормальное распределение абсолютно симметрично. Итак, у симметричного распределения асимметрия равна 0. Асимметрия распределения с длинным правым хвостом положительна. Если распределение имеет длинный левый хвост, то его асимметрия отрицательна. Асимметрия или коэффициент асимметрии рассчитывается по формуле:

.

Далее, если эксцесс (показывающий " остроту пика" распределения) существенно отличен от 0, то распределение имеет или более закругленный пик, чем нормальное, или, напротив, имеет более острый пик (возможно, имеется несколько пиков). Обычно, если эксцесс положителен, то пик заострен, если отрицательный, то пик закруглен. Эксцесс нормального распределения равен 0. Эксцесс или коэффициент эксцесса рассчитывается по формуле:

.

Более точную информацию о форме распределения можно получить с помощью критериев нормальности (например, критерия Колмогорова-Смирнова или W критерия Шапиро-Уилка). Однако ни один из этих критериев не может заменить визуальную проверку с помощью гистограммы (графика, показывающего частоту попаданий значений переменной в отдельные интервалы). Гистограмма позволяет " на глаз" оценить нормальность эмпирического распределения. На гистограмму можно наложить кривые различных распределений. Гистограмма позволяет качественно оценить различные характеристики распределения. Например, на ней можно увидеть, что распределение бимодально (имеет 2 пика, см., например рис. 1 – гистограмма распределения средних скоростей метеорных потоков, обнаруженных по измерениям в ХНУРЭ). Это может быть вызвано, например, тем, что выборка неоднородна, возможно, извлечена из двух разных популяций, каждая из которых более или менее нормальна. В таких ситуациях, чтобы понять природу наблюдаемых переменных, можно попытаться найти качественный способ разделения выборки на две части. Результат такого разделения по наклонениям орбит ( и ) приведен на рис. 2 и 3. Можно видеть, как при таком разделении гистограммы стали уже одномодальными и каждая из них ближе к нормальному распределению, чем гистограмма смеси двух популяций рис. 1.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.