Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Способи завдання та дослідження функцій
Функцію можна задати різними способами. Найбільш поширені і важливі серед них – завдання функції формулою (аналітичний), табличний та графічний. При використанні ПК використовується також алгоритмічний спосіб. Побудова і аналіз графіків функцій. Графіком функції f називається геометричне місце (множина) точок на координатній площині, які мають координати , у яких абсцисами слугують значення незалежної змінної х, а ординатами – відповідні значення функції . Функції характеризуються рядом властивостей, до важливіших з яких (для побудови і дослідження графіків) відносяться: парність, нулі, періодичність, монотонність, обмеженість функції, наявність у функції асимптот і оберненої функції. Функція називається парною, якщо для будь-яких двох різних значень аргументу із області її визначення виконується рівність (наприклад, , ). Функція називається непарною, якщо для будь-якого значення аргументу із області визначення функції виконується рівність (наприклад, ). Існують функції, які не можна віднести до парних або непарних – аморфні (наприклад, ). Графік парної функції симетричний відносно вісі OY, а непарної – відносно центру О. Нулі функції. Нулями функції називають те значення аргументу, при якому функція набуває нульового значення. Графічно нулями функції є точки перетину графіку функції з віссю абсцис. Періодичні функції. Функція називається періодичною, якщо існує число Т таке, що для кожного значення аргументу х з області її завдання має місце рівність . Число Т називають періодом функції. Монотонність функції. Функція називається зростаючою на деякому проміжку, якщо для будь-яких значень х з цього проміжку, більшому значенню аргументу, відповідає більше значення функції. Функція називається спадною (спадаючою) на деякому проміжку, якщо для будь-яких значень х з цього проміжку, більшому значенню аргументу відповідає менше значення функції. Зростаючі та спадаючі функції називаються монотонними. Асимптоти. Асимптотою графіка функції називається пряма, до якої наближається графік даної функції при прямуванні аргументу до нескінченності або до деякого числа а. Асимптоти можуть бути вертикальними, горизонтальними або похилими. Обмежені функції. Функція називається обмеженою зверху (знизу), якщо існує таке число М, що для всіх х з області визначення . Функція називається обмеженою, якщо існує таке число М> 0, що для всіх х з області визначення . Обернена функція і її графік. Дана функція . Виразимо х як деяку функцію від у: , тобто представимо у як аргумент, а х – як функцію. Тоді функція називається оберненою по відношенню до функції , якщо при підстановці її замість аргументу отримуємо тотожну рівність: . Складна функція. Функція, задана у вигляді , називається складною функцією х або суперпозицією функцій g та f.
|