Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Центрирование линз
Погрешность установки заготовок на стадии предварительного шлифования и при сборке блока приводит к разнотолщинности линз по краю. Следствием этого является несовпадение линии, соединяющей геометрические центры поверхностей (геометрической оси), с линией, соединяющей центры кривизны поверхностей (оптической осью). Такую (децентрированную) линзу можно рассматривать как правильную с приставленным к ней сферическим клином. Действие его вызывает смещение осевого луча, поперечный хроматизм, кому и астигматизм изображения. Децентрирование С может быть оценено значением угла α наклона децентрированной поверхности по отношению к оптической оси, т. е. С = α, ”, или выражено в линейной мере: С = α ∙ R, мм, где R – радиус децентрированной поверхности, мм. Для совмещения геометрической оси линзы с оптической осью технологическим маршрутом предусматривается операция центрирования. Способы ее выполнения различны в зависимости от категории сложности линзы по параметру С (допуск на децентрирование) и от типа производства (табл. 8.4). Таблица 8.4 Способы центрирования линз по РТМ 3-1635-83
Критерием оценки сложности линз при механическом способе установки является угол зажатия φ линзы (табл. 8.5 и заданный чертежом допуск С на децентрирование. Таблица 8.5 Категории сложности центрируемых линз
Приведенные в табл. 8.4 типовые схемы процесса центрирования не распространяются на линзы диаметром более 200 мм. Геометрическую ось таких линз совмещают с оптической непосредственно в процессе обработки преломляющих поверхностей, контролируя разнотолщинность Δ Ткр по краю
где D – диаметр линзы, мм; С – допуск на децентрирование, мм; R – радиус обрабатываемой поверхности, мм; h – стрелка прогиба поверхности радиуса R, мм. Линзы диаметром менее 200 мм центрируют после завершения: обработки преломляющих поверхностей. Операция состоит из двух переходов: 1) совмещения оптической оси линзы с осью вращения % шпинделя станка и фиксации этого положения; 2) совмещения геометрической оси линзы с оптической путем обработки детали по диаметру до заданного размера. Механический способ установки линзы с фиксацией положения зажатием между патронами в условиях крупносерийного и массового производства наиболее эффективен. Применение этого способа ограничивается размерами радиусов поверхностей, которые определяют угол зажатия φ: где φ 1 и φ 2 — углы наклона касательных к 1-й и 2-й поверхностям линзы (рис.8.1), °; D nl и D n2— диаметры центрировочных патронов со стороны радиусов R 1и R 2поверхностей линзы соответственно, мм. С уменьшением значения угла φ точность совмещения оптической оси линзы с осью вращения шпинделя уменьшается (табл. 8.6). Таблица 8.6 Зависимость точности установки линзы от угла зажатия φ
Суть механического способа совмещения оптической оси линзы с осью вращения шпинделей заключается в следующем (рис. 8.1): децентрированная линза, устанавливаемая между патронами, может занять положение, при котором ее оптическая ось O1 – О2 не будет совпадать с осью А1 – А2вращения шпинделей. При этом возникнут две неуравновешенные силы, действующие в противоположные стороны: Р – равнодействующая усилий N1, и N2, направленных по нормали к преломляющим поверхностям, и сила F – равнодействующая сил трения F 1 и F 2, направленных по касательной к преломляющим поверхностям. Если сила Р будет больше силы F, она сдвинет линзу в положение, при котором ось О1 – О2совпадет с осью А1 – А2. Численные значения и соотношение сил Р и F зависят от кривизны преломляющих поверхностей.
Критическое значение угла φ, при котором прекращается самоцентрирование, составляет для менисков 23°, для остальных типов линз 17°. Независимо от размера угла зажатия диаметр Dлинзы должен удовлетворять соотношению: D > 0.4 R 1 R 2/(R 1+ R 2). Механический способ установки используют при центрировании линз диаметром от 3 до 150 мм. Он прост и высокопроизводителен, применяется в станках-полуавтоматах. Недостатками являются невозможность самоцентрирования линз с поверхностями малой кривизны и трудоемкость настройки соосности шпинделей. Ручной способ установки линзы применяют в том случае, если нельзя механическим способом совместить оптическую ось линзы с осью вращения шпинделей. Положение линзы фиксируют приклеиванием к патрону. Правильность установки контролируют с помощью оптических средств: 1) по блику – перемещением линзы по кромке патрона добиваются положения, при котором отраженное от поверхности детали изображение источника света остается неподвижным при вращении шпинделя станка (точность центрирования 0, 02-0, 01 мм); 2) с помощью коллимационных приборов, работающих в проходящем или отраженном свете (точность центрирования 0, 005 – 0, 010 мм); 3) с помощью автоколлимационного прибора модели ЮС-13, устанавливаемого на станке (точность центрирования 0, 003 – 0, 005 мм); применяют в мелкосерийном производстве при высоких требованиях к точности центрирования. При ручном способе установки линзу 3прижимают к торцу патрона 1, на скошенную часть которого нанесена центрировочная смола 2(рис. 8.2). Центр кривизны O1 поверхности, прилегающей к патрону, всегда будет находиться на оси КК' вращения последнего, а центр кривизны О2 второй поверхности может не совпадать с нею. Оптическая ось O1 – О2 окажется наклоненной к оси КК' под некоторым углом θ. Перемещением линзы добиваются их совмещения, контролируя положение при помощи одного из перечисленных оптических средств. При центрировании линз, у которых R 1 ≠ R 2, в качестве базы принимают поверхность с большей кривизной. Ручной способ установки применяют для центрирования линз диаметром от 3 до 150 мм.
|