Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Движение заряженных частиц в магнитном поле






Итак, как отмечалось, в постоянном магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца определяемая выражением (1.1).

Эта сила перпендекулярна скорости v, а потому работы не производит. Она лишь искривляет траекторию, но не изменяет величину скорости частицы. Не меняется следовательно и релятивистская масса частицы m.

Рассмотрим случай, когда магнитное поле постоянно однородно. Если скорость частицы направлена вдоль поля B, то согласно (1.1) сила F м обратится в нуль. То есть частица будет двигаться прямолинейно с постоянной скоростью. Таким образом, магнитное поле не влияет на движение частицы, если последнее происходит вдоль поля.

Если же частица движется перпендекулярно к силовым линиям магнитного поля, то ее скорость, оставаясь постоянной по велечине меняется по направлению. Сила F м также постоянна по величине и перпендекулярна к траектории частицы. Отсюда следует, что траектория частицы будет представлять дугу окружности (рис. 1.1), плоскость которой перпендекулярна магнитному полю. Если заряд q положителен, то направления вектора B и угловой скорости вращения ω противоположны. Если же заряд отрицателен, то эти направления совпадают.

Ускорение частицы направлено к центру окружности, по которой она вращается и определяется согласно (1.26).

a = ω 2· r, (1.26)

где r – радиус-вектор этой окружности.

Значение угловой скорости ω можно определить из уравнения движения (1.27).

ω 2· r ·m = q [ v × B ]. (1.27)

Задаваясь v как ω r, выразим угловую скорость, и запишем:

(1.28)

Здесь величину ω принято называть циклотронной частотой, а rциклотронным радиусом. Заметим, что выражение (1.28) справедливо как для нерелятивистских, так и для релятивистских движений, если только под m понимать релятивистскую массу частицы.

 

 

Рис. 1.1. Траектория движения положительно-заряженной частицы в однородном магнитном поле

При рассмотрении более общего случая, когда скорость v направлена под углом к магнитному полю, ограничиваясь нерелятивистскими скоростями, представим скорость v в виде:

v = v ||+ v , (1.29)

где v || –составляющая скорости, направленная вдоль поля; v – составляющая скорости направленная перпендикулярно полю.

Движение с этими скоростями – независимы. Первая составляющая в правой части уравнения (1.29) есть равномерное прямолинейное движение вдоль поля со скоростью v ||, второе – равномерное вращение по окружности вокруг поля с угловой скоростью определяемой согласно (1.28). Радиус этой окружности определяется как:

(1.30)

В результате сложения обоих движений, возникает движение по спирали, ось которой параллельна магнитному полю.

Таким образом, спиралевидная траектория движения частицы в однородном магнитном поле наблюдается при наличии любой сторонней силы, заставляющей двигаться частицу вдоль силовых линий этого поля. В качестве такой силы, может выступать, например, электрическая составляющая силы Лоренца (1.2) (при соблюдении условия: E < < B), развивающая скорость дрейфа частицы согласно выражению (1.31) [3].

, (1.31)

где v д – (скорость дрейфа) скорость такой системы отсчета, относительно которой частица движется только по окружности (v д компенсирует прямолинейное движение частицы вдоль поля).

Ось спирали в данном случае направлена параллельно магнитному полю, однако шаг спирали из-за наличия ускорения a|| со временем будет меняться. Такая картина движения сохранится до тех пор, пока скорость частицы из-за наличия ускорения не возрастет на столько, что движение перейдет в релятивистское.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.