Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Решение уравнений Лапласа и Пуассона.
Для решения уравнений Пуассона и Лапласа (частный случай, когда ) – уравнений эллиптического типа – предназначена функция relax(a, b, c, d, e, f, u, rjac), реализующая метод релаксации. Фактически, эту функцию можно использовать для решения эллиптического уравнения общего вида которое может быть сведено к уравнению в конечных разностях В частности, для уравнения Пуассона коэффициенты . Идея метода релаксации заключается в следующем. Если нет источников (уравнение Лапласа), то значение функции в данном узле на текущем шаге определяется как среднее значение функции в ближайших узлах на предыдущем шаге k При наличии источников разностная схема имеет вид Метод релаксации сходится достаточно медленно, так как фактически он использует разностную схему с максимально возможным для двумерного случая шагом . В методе релаксации необходимо задать начальное приближение, то есть значения функции во всех узлах области, а так же граничные условия. Функция relax возвращает квадратную матрицу, в которой: 1) расположение элемента в матрице соответствует его положению внутри квадратной области, 2) это значение приближает решение в этой точке. Эта функция использует метод релаксации для приближения к решению. Вы должны использовать функцию relax, если Вы знаете значения искомой функции u(x, y) на всех четырех сторонах квадратной области. Аргументы: a, b, c, d, e – квадратные матрицы одного и того же размера, содержащие коэффициенты дифференциального уравнения. f – квадратная матрица, содержащая значения правой части уравнения в каждой точке внутри квадрата u – квадратная матрица, содержащая граничные значения функции на краях области, а также начальное приближение решения во внутренних точках области. rjac – Параметр, управляющий сходимостью процесса релаксации. Он может быть в диапазоне от 0 до 1, но оптимальное значение зависит от деталей задачи.
Задаем правую часть уравнения Пуассона – два точечных источника
Задаем значения параметров функции relax
Задаем граничные условия и начальное приближение – нули во всех внутренних точках области
Находим решение и представляем его графически в виде поверхности и линий уровней.
Если граничные условия равны нулю на всех четырех сторонах квадрата, можно использовать функцию multigrid. Алгоритм метода достаточно громоздкий, поэтому рассматривать его мы не будем.
|