Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Уравнения параболического типа.
Еще один пример использования конечных разностей – уравнение диффузии. Это уравнение параболического типа. Явная разностная схема для этого уравнения имеет вид Эта разностная схема устойчива, если . Для краткости в дальнейшем мы будем обозначать весь множитель, стоящий перед скобкой, как k. Задаем коэффициент
Задаем начальные и граничные условия
Уравнение в конечных разностях имеет вид Представляем результаты на графике. (Для большей наглядности изображена только центральная часть) Основное достоинство явных методов – их простота – зачастую сводится на нет достаточно жесткими ограничениями на величину шага. Явные схемы обычно устойчивы при столь малых шагах по времени, что они становятся непригодными для практических расчетов. Этого существенного недостатка позволяют избежать неявные схемы. Свое название они получили потому, что значения искомой функции на очередном временном шаге не могут быть явно выражены через значения функции на предыдущем шаге. Рассмотрим применение неявной схемы на примере уравнения теплопроводности Запишем неявную разностную схему для этого уравнения Здесь первый индекс соответствует пространственной, а второй – временной координате. В отличие от явной схемы, для вычисления в правой части уравнения используются значения функции на том же самом временном шаге. Вводя обозначение , уравнение можно переписать в виде или в матричной форме где . Задаем количество узлов сетки (в данном случае оно одинаково для обеих переменных)
Задаем значения параметров и начальное распределение температуры в области Формируем матрицы уравнения
Находим решение системы
|