Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Аппроксимация полиномами






Теперь попытаемся подобрать полиномы второй и третьей степени, в качестве аппроксимирующей функции. Для этих целей служат встроенные функции regress и уже знакомая нам функция interp. (Очевидно, что если в качестве аппроксимирующей функции брать полином степени на единицу меньше числа точек, то задача сведется к задаче глобальной интерполяции и полученный полином будет точно проходить через все заданные узлы.)

Вводим степени полиномов:

Функция regress является вспомогательной, она подготавливает данные, необходимые для работы функции interp. Вектор vs содержит, в том числе, и коэффициенты полинома

Функция interp возвращает значение полинома в точке z. Определив новые функции f2, f3, мы получили возможность находить значение полинома в любой заданной точке.

Коэффициенты:

Стандартные отклонения почти не отличают друг от друга, коэффициент при четвертой степени z невелик, поэтому дальнейшее увеличение степени полинома нецелесообразно и достаточно ограничиться только второй степенью.

К сожалению, функция regress имеется далеко не во всех версиях Matcad 'а. Однако, провести полиномиальную регрессию можно и без использования этой функции. Для этого нужно определить коэффициенты нормальной системы и решить полученную систему уравнений, например, матричным методом.

Теперь попытаемся аппроксимировать экспериментальные данные полиномами степени m и m1, не прибегая к помощи встроенной функции regress.

Вычисляем элементы матрицы коэффициентов нормальной системы

и столбец свободных членов

Находим коэффициенты полинома, решая систему матричным методом,

Определяем аппроксимирующие функции

Коэффициенты полиномов следующие:

Вычислим стандартное отклонение

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.