Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Аппроксимация функцией произвольного вида
Теперь построим аппроксимирующую функцию дробно–рационального типа . Для этого воспользуемся функцией genfit. Функция имеет следующие параметры: · x, y – векторы, содержащие координаты заданных точек, · F – функция, задающая искомую функциональную n –параметрическую зависимость и частные производные этой зависимости по параметрам. · v – вектор, задающий начальные приближения для поиска параметров.
Поскольку нулевой элемент функции F содержит искомую функцию, определяем функцию следующим образом: Вычисляем среднее квадратичное отклонение
Функция genfit имеется не во всех реализациях Mathcad 'а. Возможно, однако, решить задачу, проведя линеаризацию. Заданная функциональная зависимость может быть линеаризована введением переменных и . Тогда . Определим матрицы коэффициентов нормальной системы (см. книгу [8] из списка литературы)
Находим коэффициенты функции, решая систему матричным методом,
Определяем функцию: Вычислим стандартное отклонение
Обратите внимание! Мы получили другие коэффициенты! Вспомните, задача на нахождение минимума нелинейной функции, особенно нескольких переменных, может иметь несколько решений. Стандартное отклонение больше, чем в случае аппроксимации полиномами, поэтому следует остановить свой выбор на аппроксимации полиномом. Представим результаты аппроксимации на графиках В тех случаях, когда функциональная зависимость оказывается достаточно сложной, может оказаться, что самый простой способ нахождения коэффициентов – минимизация функционала Ф " в лоб".
|