Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Логарифмическая функция. Эта функция определяется как функция, обратная показательной: число называется логарифмом числа , если
Эта функция определяется как функция, обратная показательной: число называется логарифмом числа , если , обозначается . Т.к. значения показательной функции всегда отличны от нуля, то логарифмическая функция определена на всей плоскости , кроме точки . , т.е. или, , где . Формула (*) показывает, что функция комплексного переменного имеет бесчисленное множество значений, т.е. – многозначная функция. Однозначную ветвь этой функции можно выделить, подставив в формулу (*) определенное значение k. Положив k=0, получим однозначную функцию, которую называют главным значением логарифма и обозначают символом : Формулу (*) можно переписать так . Из формулы (*) следует, что логарифмическая функция обладает известными свойствами логарифма действительного переменного: Степенная функция . Если n – натуральное число, то степенная функция определяется равенством . Функция - однозначная. Если , то этом случае Функция - многозначная.
Если , то степенная функция определяется равенство Функция - многозначная. Степенная функция с произвольным комплексным показателем определяется равенством
|