Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.

Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.

Метод конечных разностей






Существует множество численных методов решения дифференциальных уравнений. Некоторые из них ищут решение в виде аналитических функций. Однако, для случаев со сложной геометрией или разрывами в граничных условиях такие методы становятся довольно громоздкими. Поэтому большинство численных методов решения дифференциальных уравнений рассматривают дискретно заданные («сеточные») функции, т.е. функции, заданные на некотором множестве точек, называемом сеткой.

Поговорим о сетках. В одномерном случае от сетки остается лишь конечное множество точек, заданное на отрезке, на котором ищется решение. Точки могут располагаться равномерно или неравномерно. В многомерном случае наблюдается огромное многообразие типов сеток. Приведем лишь несколько примеров. Ниже на рисунках представлены равномерные прямоугольная и треугольная сетки.

Сетки бывают неравномерными (часто линии сетки сгущают в той области, где хотят поднять точность расчета).

Сетки бывают адаптивными (например, сетка, являющаяся прямоугольной в некоторой системе координат, связанной с поверхностью).

Правильный подбор типа и параметров сетки может существенно (в отдельных случаях на порядки) сократить ресурсы, требуемые для получения результата.

Точки пересечения линий сетки называются узлами. Элементарные области, ограниченные линиями сетки (плоскостями или иными поверхностями в трехмерном случае) называются ячейками. Значения искомой функции могут задаваться либо в узлах сетки, либо в каких-либо точках (например, в центрах) ячеек.

Численные методы решения дифференциальных уравнений, работающие с сеточными функциями, сводят исходную задачу к решению системы алгебраических уравнений. Одним из самых распространенных методов является метод конечных разностей[7]. Ему будет посвящена значительная часть данного курса. Не потому, что он лучший. Просто когда-то он был самым распространенным и по нему написано огромное количество книг, в которых изложены все трудности, которые встречаются и в других методах. Например, можно почитать книжки [9, 10]. Как правило, для метода конечных разностей используют прямоугольные сетки. Значения функции рассчитываются в узлах сетки.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.