Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Система – множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.
Рассмотрим основные понятия, характеризующие строение и функционирование систем. Элемент – простейшая неделимая часть системы (рис. 1). Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от аспекта его изучения. Таким образом, элемент – это предел членения системы с точек зрения решения конкретной задачи и поставленной цели. Систему можно расчленить на элементы различными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.
Рис. 1. Состав системы Подсистема. Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, которые представляют собой компоненты более крупные, чем элементы, и в то же время более детальные, чем система в целом (рис. 1). Возможность деления системы на подсистемы связана с вычленением совокупностей взаимосвязанных элементов, способных выполнять относительно независимые функции, подцели, направленные на достижение общей цели системы. Названием «подсистема» подчеркивается, что такая часть должна обладать свойствами системы (в частности, свойством целостности). Этим подсистема отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целостности (для такой группы используется название «компоненты»). Например, подсистемы автоматизированной системы управления, подсистемы пассажирского транспорта крупного города. Структура. Это понятие происходит от латинского слова structure, означающего строение, расположение, порядок. Структура отражает наиболее существенные взаимоотношения между элементами и их группами (компонентами, подсистемами), которые мало меняются при изменениях в системе и обеспечивают существование системы и ее основных свойств. Структура – это совокупность элементов и связей между ними. Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов и других языков моделирования структур. Структуру часто представляют в виде иерархии. Иерархия– это упорядоченность компонентов по степени важности (многоступенчатость, служебная лестница). Между уровнями иерархической структуры могут существовать взаимоотношения строгого подчинения компонентов (узлов) нижележащего уровня одному из компонентов вышележащего уровня, т.е. отношения, так называемого древовидного порядка. Такие иерархии называют сильными или иерархиями типа «дерева». Они имеют ряд особенностей, делающих их удобным средством представления систем управления. Однако могут быть связи и в пределах одного уровня иерархии. Один и тот же узел нижележащего уровня может быть одновременно подчинен нескольким узлам вышележащего уровня. Такие структуры называют иерархическимиструктурами со слабыми связями. Между уровнями иерархической структуры могут существовать и более сложные взаимоотношения, например, типа «страт», «слоев», «эшелонов». Примеры иерархических структур: энергетические системы, автоматизированные системы управления, государственный аппарат. Связь. Понятие «связь» входит в любое определение системы наряду с понятием «элемент» и обеспечивает возникновение и сохранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функционирование (динамику) системы. Связь характеризуется направлением, силой и характером (или видом). По первым двум признакам связи можно разделить на направленные и ненаправленные, сильные и слабые, а по характеру – на связи подчинения, генетические, равноправные (или безразличные), связи управления. Связи можно разделить также по месту приложения (внутренние и внешние), по направленности процессов в системе в целом или в отдельных ее подсистемах (прямые и обратные). Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков. Важную роль в системах играет понятие «обратной связи». Это понятие, легко иллюстрируемое на примерах технических устройств, не всегда можно применить в организационных системах. Исследованию этого понятия большое внимание уделяется в кибернетике, в которой изучается возможность перенесения механизмов обратной связи, характерных для объектов одной физической природы, на объекты другой природы. Обратная связь является основой саморегулирования и развития систем, приспособления их к изменяющимся условиям существования. Состояние. Понятием «состояние» обычно характеризуют мгновенную фотографию, «срез» системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойства системы (например, давление, скорость, ускорение – для физических систем; производительность, себестоимость продукции, прибыль – для экономических систем). Более полно состояние можно определить, если рассмотреть элементы e (или компоненты, функциональные блоки), определяющие состояние, учесть, что «входы» можно разделить на управляющие и и возмущающие х (неконтролируемые) и что «выходы» (выходные результаты, сигналы) зависят от e, и и х, т.е. zt=f(et, ut, xt). Тогда в зависимости от задачи состояние может быть определено как {e, и}, {e, u, z} или {e, х, u, z}. Таким образом, состояние– это множество существенных свойств, которыми система обладает в данный момент времени. Поведение. Если система способна переходить из одного состояния в другое (например, z1 ® z2 ® z3), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его закономерности. С учетом введенных выше обозначений поведение можно представить как функцию zt=f(z t-1, xt, ut). Внешняя среда – множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы (рис. 2).
Рис. 2. Взаимодействие системы S с окружающей средой (системы S1, S2, …, Sk) Модель – описание системы, отображающее определенную группу ее свойств. Углубление описания – детализация модели. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий. Модель функционирования (поведения) системы – это модель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), электрические, машинные на ЭВМ и др. Равновесие – это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранить свое состояние сколь угодно долго. Устойчивость – способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Эта способность обычно присуща системам при постоянном управляющем воздействии ut, если только отклонения не превышают некоторого предела. Состояние равновесия, в которое система способна возвращаться, по аналогии с техническими устройствами называют устойчивым состоянием равновесия.Равновесие и устойчивость в экономических и организационных системах – гораздо более сложные понятия, чем в технике, и до недавнего времени ими пользовались только для некоторого предварительного описательного представления о системе. В последнее время появились попытки формализованного отображения этих процессов и в сложных организационных системах, помогающие выявлять параметры, влияющие на их протекание и взаимосвязь. Развитие. Исследованию процесса развития, соотношения процессов развития и устойчивости, изучению механизмов, лежащих в их основе, уделяют в кибернетике и теории систем большое внимание. Понятие развития помогает объяснить сложные термодинамические и информационные процессы в природе и обществе. Цель. Применение понятия «цель» и связанных с ним понятий целенаправленности, целеустремленности, целесообразности сдерживается трудностью их однозначного толкования в конкретных условиях. Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен и не до конца изучен. Его исследованию большое внимание уделяется в психологии, философии, кибернетике. В Большой Советской Энциклопедии цель определяется как «заранее мыслимый результат сознательной деятельности человека». В практических применениях цель – это идеальное устремление, которое позволяет увидеть перспективы или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям. В настоящее время в связи с усилением программно-целевых принципов в планировании исследованию закономерностей целеобразования и представления целей в конкретных условиях уделяется все больше внимания. Например: энергетическая программа, продовольственная программа, жилищная программа, программа перехода к рыночной экономике. 1.2. Классификация систем
Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками. Классификацию систем можно осуществить по разным критериям. Её часто жестко невозможно проводить и она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем). По отношению системы к окружающей среде: · открытые (есть обмен ресурсами с окружающей средой); · закрытые (нет обмена ресурсами с окружающей средой). По происхождению системы (элементов, связей, подсистем): · искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.); · естественные (живые, неживые, экологические, социальные и т.д.); · виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали); · смешанные (экономические, биотехнические, организационные и т.д.). По описанию переменных системы: · с качественными переменными (имеющие только лишь содержательное описание); · с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные); · смешанного (количественно-качественное) описания. По типу описания закона (законов) функционирования системы: · типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы); · непараметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона); · параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей); · типа “Белый (прозрачный) ящик” (полностью известен закон). По способу управления системой (в системе): · управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально); · управляемые изнутри (самоуправляемые или саморегулируемые – программно управляемые, регулируемые автоматически, адаптируемые – приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся – изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов); · с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные). Сложность является определяющим свойством систем и поэтому заслуживает отдельного рассмотрения. Сложность в применении к системам имеет разный смысл – структурная, динамическая или вычислительная сложность. Обычно степень сложности оценивается количеством информации, необходимой для описания реальной системы. При таком подходе сложность ставится в зависимость от наблюдателя. Например, для нейрофизиолога мозг сложен и его адекватное описание требует много информации, для мясника мозг прост, т.к. ему нужно только отличить его от других сортов мяса, для чего он использует сравнительно мало информации. По сложности: · Малые (от 10 до 103 параметров); · Сложные (от 104 до 107 параметров); · Ультрасложные (от 108 до 1030 параметров); · Суперсистемы (от 1031 до 10200 параметров). Мы будем различать сложность как свойство систем и сложность самих задач, и соответственно, будем говорить о сложности систем и сложности задач, последнюю называют также вычислительной сложностью. Вне зависимости от типа сложности можно выделить два принципа оценки сложности систем. Первый принцип состоит в том, что сложность системы должна быть пропорциональна объему информации, необходимой для описания этой системы (так называемая дискриптивная сложность). Одним из способов оценки дескриптивной (описательной) сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними. Второй принцип состоит в том, что сложность системы должна быть проворциональная объему информации, необходимому для разрешения нечеткости системы. Оба типа сложности не согласуются друг с другом. Уменьшая одну сложность, мы, как правило, увеличиваем другую. Отметим, что с увеличением размерности (сложности системы) могут возрастать как первая, так и вторая сложность. Для примера рассмотрим экологическую систему «Озеро». Это открытая, естественного происхождения система, переменные которой можно описывать смешанным образом (количественно и качественно), в частности, температура водоёма – количественно описываемая характеристика, структуру обитателей озера можно описать и качественно, и количественно, а красоту озера можно описать качественно. По типу описания закона функционирования системы, эту систему можно отнести к непараметризованным в целом, хотя возможно выделение подсистем различного типа, в частности, различного описания подсистемы «Водоросли», «Рыбы», «Впадающий ручей», «Вытекающий ручей», «Дно», «Берег» и др. Система «Компьютер» ‒ открытая, искусственного происхождения, смешанного описания, параметризованная, управляемая извне (программно). Система “Логический диск” ‒ открытая, виртуальная, количественного описания, типа “Белый ящик” (при этом содержимое диска мы в эту систему не включаем!), смешанного управления. Систем “Фирма” ‒ открытая, смешанного происхождения (организационная) и описания, управляемая изнутри (адаптируемая, в частности, система).
1.3. Общее представление о системном анализе
Термин «системный анализ» впервые появился в связи с задачами военного управления в исследованиях RAND Corporation (1948), а в отечественной литературе получил широкое распространение после выхода в 1969 г. книги С. Оптнера «Системный анализ для решения деловых и промышленных проблем». В начале работы по системному анализу в большинстве случаев базировались на идеях теории оптимизации и исследования операций. При этом особое внимание уделялось стремлению в той или иной форме получить выражение, связывающее цель со средствами, аналогичное критерию функционирования или показателю эффективности, т.е. отобразить объект в виде хорошо организованной системы. Так, например, в ранних руководящих материалах по разработке автоматизированных систем управления рекомендовалось цели представлять в виде набора задач и составлять матрицы, связывающие задачи с методами и средствами достижения. Правда, при практическом применении этого подхода довольно быстро выяснялась его недостаточность. Исследователи стали, прежде всего, обращать внимание на необходимость построения моделей, не просто фиксирующих цели, компоненты, связи между ними, а позволяющих накапливать информацию, вводить новые компоненты, выявлять новые связи и т.д., т.е. отображать объект в виде развивающейся системы, не всегда предлагая, как это делать. Позднее системный анализ начинают определять как «процесс последовательного разбиения изучаемого процесса на подпроцессы» (С. Янг) и основное внимание уделяют поиску приемов позволяющих организовать решение сложной проблемы путем расчленения ее на подпроблемы и этапы, для которых становится возможным подобрать методы исследования и исполнителей. В большинстве работ стремились представить многоступенчато расчленение в виде иерархических структур типа «дерева», но в ряде случаев разрабатывались методики получения вариантов структур, определяемых временными последовательностям функций. В настоящее время системный анализ развивается применительно к проблемам планирования и управления. В работах этого периода системы анализируются как целое, рассматривается роль процессов целеобразования в развитии целого, роль человека. При этом оказалось, что в системном анализе не хватает средств: развиты в основном средства расчленения на части, но почти нет рекомендаций, как при расчленении не утратить целое. Поэтому наблюдается усиление внимания к роли неформализованных методов при проведении системного анализа. Вопросы сочетания и взаимодействия формальных и неформальных методов при проведении системного анализа не решены. Но развитие этого научного направления идет по пути их решения. Системный анализ (СА) – это научная стратегия достижения результата при решении сложных проблем, предполагающая комплексный учет всех основных факторов, эту проблему обусловливающих. При СА правомерно использование тех математических методов и моделей, которые позволяют получать приемлемый для практических целей результат. В связи с активизацией кризисных процессов в окружающем нас мире возможности современной науки не всегда соответствуют сложности возникающих проблем. В таких случаях даже стратегия научного анализа на основе СА оказывается в состоянии дать весьма приближенный, порой чисто качественный, результат. СА широко применяется в различных областях знаний. Для такой предметной области, как безопасность жизнедеятельности, применение СА особенно оправданно в связи со сложностью рассматриваемых процессов, в которых фокусируются действия людей, работа сложной техники, влияние внешней среды. Если учесть, что каждая составляющая этих процессов постоянно увеличивает амплитуду своих колебаний, то становятся понятными причины разнообразных негативных явлений (аварий, катастроф, стихийных бедствий и т.п.), частота которых заметно нарастает. Это отмечают многие известные ученые в своих трудах, в частности, наши современники – И.Р. Пригожин, Д.Н. Панин и др. Бесперспективность попыток объяснения окружающего нас мира с чисто научных позиций заметили еще в древности. Так, в Экклезиасте сказано: " Кто умножает знание, тот увеличивает скорбь", а швейцарский психоаналитик Карл Юнг (1875–1961 гг.), выдающийся мыслитель и философ, утверждал: " Мы богатеем познаниями и беднеем мудростью". Таким образом, несмотря на все научные достижения, уменьшения негативных тенденций в окружающем нас мире не наблюдается, а все больше и больше ученых как у нас в стране, так и за рубежом предсказывают в не столь отдаленном будущем целую череду еще более острых кризисных явлений. Поэтому есть основание говорить о необходимости, хотя бы в такой предметной области, как безопасность жизнедеятельности, результаты СА подвергать осмыслению в рамках нравственной парадигмы, носителями которой являются религия, культура, традиции и т.д.
1.4. Принципы системного анализа Принципы системного анализа – это некоторые положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Различные авторы излагают принципы с определенными отличиями, поскольку общепринятых формулировок на настоящее время нет. Однако, так или иначе, все формулировки описывают одни и те же понятия. Наиболее часто к системнымпринципам причисляют следующие: · принцип конечной цели, · принципизмерения, · принцип эквифинальности, · принцип единства, · принцип связности, · принцип модульного построения, · принцип иерархии, принцип функциональности, принцип развития (историчности, открытости), принцип децентрализации, принцип неопределенности. Рассмотрим их более подробно. Принцип конечной цели. Это абсолютный приоритет конечной (глобальной) цели. Принцип имеет несколько правил: - для проведения системного анализа необходимо в первую очередь сформулировать цель исследования. Расплывчатые, не полностью определенные цели влекут за собой неверные выводы; - анализ следует вести на базе первоочередного уяснения основной цели (функции, основного назначения) исследуемой системы, что позволит определить ее основные существенные свойства, показатели качества и критерии оценки; - при синтезе систем любая попытка изменения или совершенствования должна оцениваться относительно того, помогает или мешает она достижению конечной цели; - цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью. Принцип измерения. О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Другими словами, для определения эффективности функционирования системы надо представить ее как часть более общей и проводить оценку внешних свойств исследуемой системы относительно целей и задач суперсистемы. Принцип эквифинальности. Система может достигнуть требуемого конечного состояния, не зависящего от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различных путях развития. Это форма устойчивости по отношению к начальным и граничным условиям. Принцип единства. Это совместное рассмотрение системы как целого и как совокупности частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе. Принцип связности. Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей с внешней средой (учет внешней среды). В соответствии с этим принципом систему в первую очередь следует рассматривать как часть (элемент, подсистему) другой системы, называемой суперсистемой или старшей системой. Принцип модульного построения. Полезно выделение модулей в системе и рассмотрение ее как совокупности модулей. Принцип указывает на возможность вместо части системы исследовать совокупность ее входных и выходных воздействий (абстрагирование от излишней детализации). Принцип иерархии. Полезно введение иерархии частей и их ранжирование, что упрощает разработку системы и устанавливает порядок рассмотрения частей. Принцип функциональности. Это совместное рассмотрение структуры и функции с приоритетом функции над структурой. Принцип утверждает, что любая структура тесно связана с функцией системы и ее частей. В случае придания системе новых функций полезно пересматривать ее структуру, а не пытаться втиснуть новую функцию в старую схему. Поскольку выполняемые функции составляют процессы, то целесообразно рассматривать отдельно процессы, функции, структуры. В свою очередь, процессы сводятся к анализу потоков различных видов: материальный поток; поток энергии; поток информации; смена состояний. С этой точки зрения структура есть множество ограничений на потоки в пространстве и во времени. Принцип развития. Это учет изменяемости системы, ее способности к развитию, адаптации, расширению, замене частей, накапливанию информации. В основу синтезируемой системы требуется закладывать возможность развития, наращивания, усовершенствования. Обычно расширение функций предусматривается за счет обеспечения возможности включения новых модулей, совместимых с уже имеющимися. С другой стороны, при анализе принцип развития ориентирует на необходимость учета предыстории развития системы и тенденций, имеющихся в настоящее время, для вскрытия закономерностей ее функционирования. Одним из способов учета этого принципа разработчиками является рассмотрение системы относительно ее жизненного цикла. Условными фазами жизненного цикла информационной системы являются проектирование, изготовление, ввод в эксплуатацию, эксплуатация, наращивание возможностей (модернизация), вывод из эксплуатации (замена), уничтожение.
Отдельные авторы этот принцип называют принципом изменения (историчности) или открытости. Для того чтобы система функционировала, она должна изменяться, взаимодействовать со средой. Принцип децентрализации. Это сочетание в сложных системах централизованного и децентрализованного управления, которое, как правило, заключается в том, что степень централизации должна быть минимальной, обеспечивающей выполнение поставленной цели. Недостаток децентрализованного управления – увеличение времени адаптации системы. Он существенно влияет на функционирование системы в быстро меняющихся средах. То, что в централизованных системах можно сделать за короткое время, в децентрализованной системе будет осуществляться весьма медленно. Например, общее время синхронизации (перевода из состояния z1в z2) цепи из N автоматов с п внутренними состояниями, зависящими от состояний соседних автоматов, при централизованном управлении составляет 1 такт, а для взаимодействующих только с непосредственными соседями составляет 3N такта, в зависимости от сложности автоматов. Недостатком централизованного управления является также сложность управления из-за огромного потока информации, подлежащей переработке в старшей системе управления. Поэтому в сложной системе обычно присутствуют два уровня управления. В медленно меняющейся обстановке децентрализованная часть системы успешно справляется с адаптацией поведения системы к среде и с достижением глобальной цели системы за счет оперативного управления, а при резких изменениях среды осуществляется централизованное управление по переводу системы в новое состояние. Принцип неопределенности. Это учет неопределенностей и случайностей в системе. Принцип утверждает, что можно иметь дело с системой, в которой структура, функционирование или внешние воздействия не полностью определены. Сложные открытые системы не подчиняются вероятностным законам. В таких системах можно оценивать «наихудшие» ситуации и рассмотрение проводить для них. Этот способ обычно называют методом гарантируемого результата. Он применим, когда неопределенность не описывается аппаратом теории вероятностей. При наличии информации о вероятностных характеристиках случайностей (математическое ожидание, дисперсия и т.д.) можно определять вероятностные характеристики выходов в системе. Перечисленные принципы обладают очень высокой степенью общности. Для непосредственного применения исследователь должен наполнить их конкретным содержанием применительно к предмету исследования. Такая интерпретация может привести к обоснованному выводу о незначимости какого-либо принципа. Однако знание и учет принципов позволяют лучше увидеть существенные стороны решаемой проблемы, учесть весь комплекс взаимосвязей, обеспечить системную интеграцию.
Литература
1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. – Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. – 206 с. 2. Рыков А.С. Модели и методы системного анализа: принятие решений и оптимизация: учебное пособие для студентов высших учебных заведений / А.С. Рыков. – М.: Издательский дом «Руда и металлы», 2005. – 352 с. 3. Романов В.Н. Системный анализ для инженеров / В.Н. Романов. – СПб: СЗГЗТУ, 2006. – 186 с.
|