Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






История струнной теории






Теория, которая совершенно явно «достаточно безумна», чтобы
быть истинной теорией поля, — это струнная теория, или М-теория.
История струнной теории, возможно, самая причудливая из всех, что
значатся в анналах физики. Она была открыта совершенно случайно,
применена к решению не той проблемы, предана забвению и внезап-
но возродилась в качестве теории всего. И в конечном счете, посколь-
ку небольшие поправки невозможны без уничтожения всей теории,
ей предстоит стать либо «теорией всего», либо «теорией ничего».

Причиной столь странной истории струнной теории является
ее развитие вспять. Обычно в такой теории, как теория относитель-
ности, начинают с основных физических принципов. Затем эти
принципы сводятся к набору основных классических уравнений.
В последнюю очередь вычисляют квантовые флуктуации для этих
уравнений. Развитие струнной теории происходило в обратном на-
правлении, начавшись со случайного открытия ее квантовой теории.
И по сей день физики ломают голову над тем, какие физические прин-
ципы могут приводить в действие всю эту теорию.

Рождение струнной теории восходит к 1968 году, когда в ядер-
ной лаборатории Европейской организации ядерных исследова-
ний (CERN) в Женеве два молодых физика Габриэле Венециано и
Махико Сузуки листали книгу по математике и наткнулись на бета-
функцию Эйлера, малоизвестную математическую формулу, откры-
тую в XVIII веке Леонардом Эйлером, которая, казалось, странным
образом описывала субатомный мир. Венециано и Сузуки были
ошеломлены, увидев, что эта абстрактная математическая формула,
по всей видимости, описывала столкновение двух я-мезонных частиц
при невероятно высоких энергиях. Модель Венециано вскоре про-


извела сенсацию в физике; буквально в сотнях работ исследователи
пытались обобщить ее для описания ядерных взаимодействий.

Иными словами, струнная теория была открыта совершенно слу-
тайно. Эдвард Виттен из Института передовых исследований (кото-
рого многие считают творческим мотором многих ошеломительных
переворотов в этой теории) сказал: «По справедливости говоря, у
физиков XX века не должно было бы быть привилегии изучать эту
теорию. По справедливости говоря, струнная теория не должна была
быть изобретена».

Я ясно помню переполох, вызванный струнной теорией. Я в то
время был еще аспирантом-физиком в Калифорнийском универси-
тете в Беркли. Помню, как физики качали головами и утверждали, что
физика не должна была идти таким путем. В прошлом физика обычно
основывалась на скрупулезных наблюдениях за природой, форму-
лировании какой-либо частной гипотезы, внимательной проверки
соответствия теории экспериментальным данным, а затем скучного
повторения процесса, и так раз за разом. Струнная же теория основа-
на на получении ответа методом простой догадки. Прежде считалось,
что такие захватывающие прорывы невозможны.

Поскольку субатомные частицы нельзя разглядеть даже при помо-
щи наших мощнейших инструментов, физики прибегли к жестокому,
йо эффективному методу их анализа — сталкивании их при огром-
ных энергиях. Миллиарды долларов были пущены на сооружение
огромных «ускорителей частиц» диаметром во много километров.
В них создаются пучки субатомных частиц, сталкивающихся друг с
другом. Затем физики тщательно анализировали, что осталось после
столкновения. Целью этого трудоемкого и напряженного процесса
является создание ряда чисел, называемого матрицей рассеяния, или
S-матрицей. Этот набор чисел имеет ключевое значение, поскольку
в нем закодирована вся информация субатомной физики, — то есть
ели знать S-матрицу, то можно вывести из нее все свойства элемен-
тарных частиц.

Одной из задач физики элементарных частиц является прогно-
зирование математической структуры S-матрицы для сильных вза-
имодействий — цель настолько трудно достижимая, что некоторые
физики считали, что она лежит за пределами известной физики. Тут
уже можно представить сенсацию, которую произвели Венециано и


Судзуки, просто-напросто догадавшиеся об S-матрице, просматри-
вая математическую книжку.

Модель Венециано была совершенно нестандартной. Обычно,
когда кто-либо предлагает новую теорию (такую, как, допустим, квар-
ки), физики вертят эту теорию, изменяя простые параметры (массы
частиц или, скажем, силы взаимодействия). Но модель Венециано
была настолько хорошо пригнана, что даже малейшее нарушение ее
основной симметрии разрушало всю формулу. Эту модель можно
сравнить с изделием из хрусталя тонкой работы: при любой попытке
изменить его форму он разобьется вдребезги.

Из сотен работ, которые банально изменяли параметры модели,
тем самым разрушая ее красоту, ни одна не продержалась до сегод-
няшнего дня. Сохранилась память лишь о работах, авторы которых
задавались вопросом о том, почему вообще работает эта теория.
Иными словами, они пытались обнаружить ее симметрии. В конце
концов физики поняли, что эта теория вообще не содержит настраи-
ваемых параметров.

Как ни замечательна была модель Венециано, все же и в ней кры-
лись кое-какие проблемы. Во-первых, физики поняли, что это было
всего лишь первое приближение к окончательной S-матрице, а не
полная картина. Бундзи Сакита, Мигель Вирасоро и Кейджи Киккава
(в те времена в Университете Висконсина) поняли, что S-матрицу
нужно рассматривать как бесконечный ряд элементов и что модель
Венециано была всего лишь первым и самым важным элементом в этом
ряду. (Грубо говоря, каждый элемент в ряду представлял собой опреде-
ленное количество вариантов столкновения частиц друг с другом.
Они выработали несколько правил, при помощи которых можно было
построить высшие элементы в их приближении. В своей диссертации
я твердо решил завершить эту программу и создать все возможные
поправки к модели Венециано. Вместе с коллегой Л. П. Ю я вычислил
бесконечный набор поправочных элементов к этой модели.)

В конце концов Йоитиро Намбу из Чикагского университета
и Тэцуо Гото из Японского университета определили ключевую
характеристику, которая приводила модель в действие. Этой харак-
теристикой оказалась вибрирующая струна. (В этом направлении
также работали Леонард Зюскинд и Хольгер Нильсен.) Когда струна
сталкивалась с другой струной, создавалась S-матрица, описанная в


модели Венециано. В таком представлении каждая частица есть не
рто иное, как вибрация, или нота, взятая на струне. (Я подробнее об-
ращусь к этому понятию позднее.)

I Развитие теории проходило очень стремительно. В 1979 году
Джон Шварц, Андре Неве и Пьер Рамон обобщили струнную модель
Таким образом, что она включала в себя новый параметр — спин, —
hrro делало струнную модель подходящей кандидатурой и для взаи-
модействий частиц. (Как мы увидим далее, все субатомные частицы
вертятся подобно волчку. Спин для каждой субатомной частицы
: может быть представлен как целым числом (0, 1, 2), так и полуцелым
(1/2, 3/2). Что примечательно, струна Неве-Шварца-Рамона давала
именно этот набор спинов.)

И все же я был не удовлетворен. Двойная резонансная модель,
как тогда ее называли, представляла собой скопление странных
формул и практических методов. В течение последних 150 лет вся
физика основывалась на «полях», которые были впервые введены
британским физиком Майклом Фарадеем. Представьте себе линии
Магнитного поля, создаваемого магнитом. Эти линии пронизывают
пространство подобно паутине. В любой точке пространства можно
измерить напряженность и направления силовых магнитных линий.
Подобным образом и поле является математическим объектом,
который приобретает различные значения в каждой точке простран-
ства. Таким образом, поле определяет магнитное, электрическое
или ядерное взаимодействие в любой точке Вселенной. Поэтому
фундаментальное описание электричества, магнетизма, ядерной
силы и гравитации основано на полях. Почему струны должны быть
Чем-то другим? От «полевой теории струн» требовалось, чтобы она
дала возможность подвести итог всему содержанию теории в одном-
единственном уравнении.

В 1974 году я решил заняться этим вопросом. Вместе с коллегой
Кейджи Киккавой из Университета Осаки нам удалось вывести
самую суть полевой теории струн. Мы смогли суммировать всю ин-
формацию, содержащуюся в струнной теории, в уравнении длиной
менее четырех сантиметров[Ч Теперь, когда полевая теория струн
была сформулирована, необходимо было убедить физическое со-
общество в ее силе и красоте. Я принял участие в конференции по
теоретической физике в Аспенском центре в Колорадо тем же летом


и провел семинар с небольшой группой ведущих физиков. Я поряд-
ком нервничал: среди слушателей были два нобелевских лауреата,
Марри Гелл-Манн и Ричард Фейнман, которые славились тем, что
любили задавать едкие и остроумные вопросы, заставляя оратора
нервничать. (Однажды во время лекции, которую проводил Стивен
Вайнберг, он начертил на доске угол, отмеченный буквой W, кото-
рый был назван углом Вайнберга в его честь. Фейнман задал вопрос
о том, что означала буква W Вайнберг еще только начал отвечать,
как Фейнман крикнул: «Неверно!», что вызвало смех в зале. Что же,
может быть, Фейнман и развлек слушателей, но последним смеялся
все же Вайнберг. Угол на доске представлял важную часть теории
Вайнберга, объединившей электромагнитное и слабое взаимодей-
ствие и в конечном итоге принесшей ему Нобелевскую премию.)

В ходе своей лекции я подчеркнул тот факт, что струнная теория
поля представила бы наиболее простой и всесторонний подход к
струнной теории, в значительной степени представлявшей собой
разношерстное скопление разрозненных формул. При помощи
струнной теории поля всю теорию можно было суммировать в
одном-единственном, не очень длинном уравнении: все свойства
модели Венециано, все элементы бесконечной аппроксимации воз-
мущения, все свойства колеблющихся струн — все можно было
вывести из уравнения, которое поместилось бы в китайском печенье
с предсказаниями. Я обратил внимание на симметрии струнной тео-
рии, которые придавали ей прелесть и силу. Когда струны движутся в
пространстве-времени, они описывают двумерные поверхности, по-
хожие на полоски. Эта теория остается неизменной вне зависимости
от координат, которыми мы можем пользоваться для описания этого
двумерного пространства. Я никогда не забуду, как после лекции ко
мне подошел Фейнман и сказал: «Я не во всем могу согласиться с
вами по поводу струнной теории, но лекция, прочитанная вами, —
одна из самых красивых, которые я когда-либо слышал».

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.