Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Роторы электродвигателей, балансировка, выявление и устранение вибрации






Внутри статора двигателя помещается его вращающаяся часть – ротор. Это цилиндр, набранный из стальных листов, как и статор, на поверхности которого имеются пазы.

В пазы укладываются медные стержни – обмотка, замкнутая на торцах медными кольцами. Пазы в этом случае круглого сечения, а обмотка имеет вид клетки, называемой “бельичим колесом”. Пазы могут быть другого типа, а короткозамкнутая обмотка получается заливкой пазов алюминием, одновременно на торцах отливают и короткозамыкающие кольца с полостями для вентиляции. Эл. двигатели такого типа называются – короткозамкнутыми. Обмотка ротора короткозамкнутого двигателя является многофазной.

В пазах ротора может быть уложена также обмотка, подобная обмотке статора. В этом случае три вывода от обмотки лежащей в пазах присоединяются к трем контактным кольцам, насаженных на вал, кольца изолированы друг от друга и от вала.

При помощи щеток, наложенных на кольца, обмотка ротора присоединяется к реостату, который служит для пуска двигателя или для регулировки его скорости (частоты) вращения. Двигатель в этом случае называется – двигателем с фазным ротором. Для роторов эл.машин наиболее характерны такие повреждения, как выработка рабочей поверхности шейки и искривления вала, ослабления прессовки пакета сердечника;

обгорание поверхностей и “затяжка” стальных пластин ротора, в результате затирание его за статор, чрезмерный износ подшипников скольжения и вследствие этого “проседание” вала.

29

Выработку шеек вала не превышающею по глубине 4 -5 % его диаметра, устраняют проточкой на токарном станке. При большой выработке валы эл.машин ремонтируют, наплавляя на поврежденное место слой метала и протачивая наплавленный участок на токарном станке. Для наплавления металла на вал ротора применяют переносные электродуговые аппараты ВДУ-506МТУ3, ПДГ-270(SELMA) – полуавтомат.

Искривление вала обнаруживается путем проверки его биения в центрах токарного станка, запускают станок, а затем к вращающемуся валу подводят мел или цветной карандаш, закрепленный в суппорте станка: следы мела окажутся на выпуклой части вала. При помощи мела можно обнаружить биение, но нельзя определить его величину, которую определяет индикатор. К валу подносят наконечник индикатора, величину биения показывает его стрелка, отклоняясь по шкале, отградцифрованной в сотых или тысячных долях миллиметра. При искривлении вала до 0.1 мм на М длинны, но не более 0.2 мм на всю длину правка не обязательна на валу.

При искривлении вала до 0.3 % его длины правку производят без подогрева, а при искривлении более 0.3 % длины вал предварительно подогревают до 900 – 1000 `C и правят под прессом.

Правку вала производят гидравлическим прессом в два приема. Сначала выправляют вал до тех пор, пока его кривизна не станет менее 1 мм на 1 м длинны, а затем вал протачивают и полируют. При проточке допускается уменьшение диаметра вала не более чем на 6 % от его первоначальной величины. Ослабление прессовки пакета сердечника ротора повышает нагрев машины и увеличивает активность стали ротора. Для устранения этого дефекта при ремонте в зависимости от конструкции ротора подтягивают стяжные болты, забивают между клинья из текстолита или гетинакса промазанные клеем БФ – 2, полностью пришлифовывают сердечник.

30

Обгоревшие поверхности активной стали ротора, вследствии чего отдельные пластины называются замкнутыми между собой, встречаются главным образом в машинах с подшипниками скольжения. Ротор с таким дефектом ремонтируют проточкой его сердечника на токарном станке или специальном приспособлении. После ремонта роторы эл.машин в сборе с вентиляторами и другими вращающими частями подвергают статистической или динамической балансировке на специальных балансировочных станках.

Т.к.вибрация, вызванная центробежными силами, достигающими при большом числе оборотов несбалансированного ротора, больших величин, может стать причиной разрушения фундамента и даже аварийного выхода машины из строя. Для статической балансировки служит станок, представляющий собой опорную конструкцию из профильной стали с установленными на ней призмами трапециевидной формы. Длинна призмы должна быть такой, чтобы ротор мог сделать на них не менее 2-х оборотов.

Практически ширину рабочей поверхности призмы балансировочных станков для балансировочных роторов массой до 1 т принимают 3 -5 мм. Рабочая поверхность призм должна быть хорошо отшлифована и способна, не деформируясь, выдерживать массу балансируемого ротора. Статическая балансировка ротора на станке производится в такой последовательности:

ротор укладывают шейками вала на рабочие поверхности призм. При этом ротор, перекатываясь на призмах, займет такое положение, при котором его наиболее тяжелая часть окажется внизу.

Для определения точки окружности в которой должен быть установлен балансирующий груз, ротор пять раз перекатывают и после каждой остановки отмечают мелом нижнюю “тяжелую” точку.

31

После этого на большой части окружности ротора окажется пять меловых черточек. Отметив середину расстояния между крайними меловыми отметками, определяют точку установки уравновешивающего груза: она находится в месте, диаметрально – противоположном средней “тяжелой” точке. В этой точке устанавливают уравновешивающий груз. Его массу подбирают опытным путем до тех пор, пока ротор не перестанет перекатываться, будучи установлен в любом произвольном положении. Правильно отбалансированный ротор после перекатывания в одном и другом направлениях должен во всех положениях находиться в состоянии равновесия.

При необходимости более полного обнаружения и устранения оставшегося дебаланса, окружность ротора делят на шесть равных частей. Затем укладывают ротор на призмы так, что – бы каждая из отметок поочередно находилась на горизонтальном диаметре,

в каждую из шести точек поочередно навешивают небольшие груза до тех пор, пока ротор не выйдет из состояния покоя. Массы грузов для каждой из шести точек будут различными. Наименьшая масса будет в “тяжелой” точке, наибольшая – в диаметрально–противоположной части ротора. При статическом методе балансировки уравновешивающий груз устанавливают только на одном торце ротора и таким образом устраняют статический дебаланс. Однако этот способ балансировки применим только для коротких роторов мелких и тихоходных машин. Для уравновешивания масс роторов крупных эл.машин (мощностью 50 кВт) с большими скоростями вращения (свыше 1000 об/мин.) применяют динамическую балансировку, при которой уравновешивающий груз устанавливают на обоих торцах ротора.

32

Это объяснено тем, что при вращении ротора с большой скоростью, каждый его торец имеет самостоятельное биение, вызванное несбалансированными массами.

Для динамической балансировки наиболее удобен станок резонансного типа, состоящий из двух сварных стоек (1), опорных плит (9), и балансировочных головок. Головки состоят из подшипников (8), сегментов (6), и могут быть закреплены неподвижно болтами (7), либо свободно качаться на сегментах. Балансируемый ротор (2) приводится во вращение эл.двигателем (5). Муфта расцепления и служит для отсоединения вращающего ротора от привода в момент балансировки.

Динамическая балансировка роторов состоит из двух операций:

а) измеряют первоначальную величину вибрации, дающую представление о размерах неуравновешенности масс ротора;

б) находят точку размещения и определения массы уравновешенности груза для одного из торцов ротора.

Для первой операции, головки станка закрепляют болтами (7). Ротор при помощи эл.двигателя приводится во вращение, после чего привод отключают, расцепляя муфту и освобождают одну из головок станка.

Освобожденная головка под действием радиально – направленной центробежной силы небаланса раскачивается, что позволяет стрелочным индикаторам (3) измерять амплитуду колебания головки. Такое же измерение проводится для второй головки.

Вторую операцию выполняют методом “обхода груза”. Разделяют обе стороны ротора на шесть равных частей, в каждой точке поочередно закрепляют пробный груз, который должен быть меньше предполагаемого небаланса. Затем описанным выше способом измеряют колебание головки для каждого положения груза. Наилучшим местом размещения груза будет точка, в которой амплитуда колебаний будет минимальной.

33

Массу уравновешивающего груза Q получают из вращения:

Q = P * K0 / K0 – Kмин

где Р – масса пробного груза;

К0 – первоначальная амплитуда колебаний до обхода пробным грузом;

Кмин – минимальная амплитуда колебаний при обходе пробным грузом.

Закончив балансировку одной стороны ротора, этим же способом балансируют другую половину. Балансировку считают удовлетворительной, если центробежная сила оставшейся неуравновешенности не превышает 3 % массы ротора.

34






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.