Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Рибосомы






Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой ~ 2, 5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы прокариотических и эукариотических организмов различаются по размерам. У эукариот они представлены 80S частицами, тогда как коэффициент седиментации рибосом прокариот составляет 70S. Рибосомы всех известных организмов построены из двух неравных субчастиц: прокариотические – 30S и 50S, а эукариотические – 40S и 60S. 70S рибосомы эубактерий в своем составе содержат 55–60 рибосомных белков, для 80S рибосом эукариот это число составляет 75–85. В обоих случаях рибосомные белки в составе рибосом ассоциированы с молекулами рРНК, образуя пространственно организованные рибонуклеопротеиновые тяжи.

Рибосомные белки E. coli. В настоящее время более 50 рибосомных белков выделено в высокоочищенном состоянии. Молекулярная масса самого маленького белка составляет 5 кДа, а самого большого – 61 кДа, тогда как для большинства рибосомных белков эти значения лежат в пределах 10–20 кДа. Определены аминокислотные последовательности полипептидных цепей всех рибосомных белков E. coli. Малая рибосомная субчастица содержит 21 белок с суммарной молекулярной массой 350 кДа.

Белки в составе 30S субчастицы ассоциированы с 16S РНК, длина которой составляет 1542 нуклеотида (нт). Суммарные молекулярные массы малой и большой субчастиц рибосом достигают соответственно 850 и ~ 1450 кДа. Третья часть массы большой субчастицы приходится на 34 рибосомных белка, а две третьих – на 23S (2904 нт) и 5S рРНК (120 нт). Продолжают накапливаться биохимические данные, указывающие на центральную, возможно ключевую, роль рРНК в обеспечении этапов трансляции. Обнаружены специфические внутримолекулярные и межмолекулярные взаимодействия между различными функциональными участками рРНК. На прямое участие 23S рРНК в трансляции указывает наличие специфических комплементарных взаимодействий между ней и CCA-концами тРНК, акцептирующими аминокислотные остатки. В уточненных пространственных моделях 30S и 50S субчастиц, рассмотренных ниже, сегменты рРНК со специфическими структурными особенностями располагаются в функционально значимых участках рибосом.

Методы исследования пространственной структуры рибосом. Вся информация о пространственной структуре рибосом получена с использованием современных методов, в которых реализуются два направления исследований: структурно-биологические исследования низкого и высокого разрешения, а также биохимические – высокого разрешения. Получаемые результаты, по мере совершенствования методов, все более сближаются друг с другом.

Рис. I.17. Карта сборки 50S субчастицы рибосом E. coli из индивидуальных рибосомных белков и рРНК в процессе реконструкции in vitro

Стрелками обозначены межмолекулярные взаимодействия, удерживающие индивидуальные белки (цифры в кружках) в составе субчастицы, и взаимозависимость сборки. Толщина стрелок отражает прочность связей

 

Одними из первых следует упомянуть кристаллографию и ЯМР-спектроскопию. Имеются значительные достижения в изучении пространственной структуры небольших субдоменов рРНК с помощью ЯМР-спектроскопии, а также в исследовании структуры индивидуальных рибосомных белков с использованием методов ЯМР и кристаллографии. В последнее время закристаллизованы отдельные рибосомные субчастицы и 70S рибосомы галофильных и термофильных бактерий. Получены картины дифракции для 50S субчастиц галофилов с разрешением 3 Å, а также рибосом и субчастиц T. thermophilusс разрешением 7–20 Å. Однако эти картины дифракции, по крайней мере, в 10 раз сложнее тех, с которыми приходилось иметь дело раньше при расшифровке структур несимметричных макромолекул, что сильно затрудняет их интерпретацию. В результате наиболее распространена в настоящее время альтернативная стратегия определения структуры рибосом " по частям": через пространственные структуры индивидуальных рибосомных белков, субдоменов рРНК и их небольших комплексов. Выявленное в ходе этих исследований большое разнообразие пространственных структур рибосомных белков указывает на существование не менее разнообразных механизмов распознавания белками специфических участков РНК, количество которых должно значительно превышать ограниченное число известных механизмов ДНК–белкового узнавания.

Рис. I.18. Полупрозрачная модель пространственной структуры рибосомы E. coli (а) и расположение рибосомных белков, а также рРНК в ее 30S-субчастице (б)

Указано положение мРНК, тРНК в А-, Р- и Е-участках рибосомы, белка L1 и " выступа" (stalk) 50S субчастицы. Черными шарами обозначены рибосомные белки, светлыми цилиндрами – спиральные участки 16S рРНК, стрелками – места связывания мРНК, тРНК и антибиотиков, цифрами – рибосомные белки и участки рРНК согласно общепринятой номенклатуре

 

Другим плодотворным направлением исследования пространственной структуры рибосом при низком разрешении является электронная микроскопия (ЭМ). При этом образцы с рибосомами быстро замораживают в жидком этане в тонком слое буфера и исследуют с помощью ЭМ при температуре жидкого азота и низких дозах облучения для сохранения чувствительных к радиации структур в интактном состоянии. На получаемых в результате микрофотографиях могут одновременно содержаться сотни и тысячи по-разному ориентированных индивидуальных рибосом, изображения которых далее подвергаются компьютерному анализу с последующей реконструкцией трехмерной структуры индивидуальной рибосомной частицы. Реконструкцию трехмерных структур работающих рибосом получают в результате анализа микрофотографий ультратонких срезов отдельных бактериальных клеток, активно синтезировавших белок или находившихся в состоянии блока трансляции. Одной из разновидностей ЭМ, активно использующейся для исследования пространственной структуры рибосом, является иммуноэлектронная микроскопия. Первичные и пространственные структуры рибосомных белков, формирующие их эпитопы, значительно различаются, поэтому такие белки редко дают перекрестные иммунологические реакции и их можно четко идентифицировать с помощью специфических антител. При анализе комплексов антител с рибосомами с помощью электронной микроскопии можно видеть, что многие белки локализованы на поверхности рибосомных субчастиц. Оказалось, что пространственное расположение большинства рибосомных белков весьма консервативно. В частности, у грамположительных и грамотрицательных бактерий гомологичные белки занимают одни и те же места на поверхности рибосомных субчастиц.

Важная информация о расположении индивидуальных рибосомных белков в составе рибосом получена и с помощью метода поперечных сшивок. Используя бифункциональные реагенты, например диэпоксибутан или 2-иминотиолан, осуществляют ковалентное соединение рибосомных белков, расположенных по соседству на расстоянии 5–10 Å друг от друга. Поскольку в настоящее время аминокислотные последовательности всех рибосомных белков известны, этим методом можно однозначно определять, какие аминокислотные остатки в соседних белках участвуют в образовании поперечных сшивок.

Целостность рибосом в водных растворах в значительной степени зависит от температуры и ионных условий, особенно от концентрации двухвалентных ионов (Mg2+ и Ca2+). Понижение концентрации ионов Mg2+ приводит вначале к диссоциации рибосом на большую и малую субчастицы, а затем к последовательному упорядоченному освобождению рибосомных белков из субчастиц вплоть до их полного распада с образованием пула отдельных белков и рРНК. Процесс разборки рибосом обратим, и при восстановлении ионных и температурных условий в реакционной смеси возможно реконструирование рибосомных субчастиц из отдельных компонентов с образованием полноценных функционально активных рибосом. На рис. I.17 представлена карта сборки большой субчастицы рибосом E. coli из отдельных компонентов, которая отражает последовательность присоединения рибосомных белков к рРНК, а также два основных этапа сборки. Для перехода ко второму этапу необходимо дальнейшее изменение ионных условий и температуры реакционной среды. Процесс сборки субчастиц рибосом является кооперативным, т.е. присоединение одних рибосомных белков стимулирует включение других. При этом белки, включающиеся в состав рибосомных субчастиц друг за другом, в зрелых субчастицах оказываются расположенными рядом. Реконструирование рибосом из отдельных компонентов in vitro внесло большой вклад в понимание пространственной организации рибосомных субчастиц и функциональной значимости отдельных рибосомных белков.

Метод рассеяния нейтронов на протонах, входящих в состав белков, также способствовал пониманию пространственного расположения белков в рибосомах. Отклонения нейтронов после контактов с протонами белков можно легко отличить от отклонений, которые являются результатом взаимодействия нейтронов с другими атомами, в частности тяжелыми изотопами водорода (2H или 3Н). Если в состав дейтерированных рибосомных субчастиц ввести два рибосомных белка, содержащих обычные протоны, то по рассеянию нейтронов на протонах, характер которого значительно отличается от такового на дейтронах, можно определить расстояния между центрами масс этих двух белков. Усовершенствованный метод нейтронного рассеяния позволяет определять не только расстояния между рибосомными белками, но и пространственную организацию самих полипептидных цепей в составе рибосомных субчастиц. Полученные таким образом нейтронные карты основаны на измерении расстояний между 93 белками. Такие карты имеют фундаментальное значение в интерпретации экспериментальных данных, полученных другими методами, особенно в результате молекулярного моделирования.

При отсутствии данных рентгеноструктурного анализа высокого разрешения молекулярные биологи традиционно обращаются к молекулярному моделированию пространственных структур. В некоторых случаях такой подход бывает весьма успешным, что особенно ярко проявилось при расшифровке пространственной структуры ДНК. Все модели, описанные в настоящее время, учитывают филогенетические особенности вторичной структуры 16S рРНК, и в некоторых из них принимаются во внимание третичные взаимодействия внутри этих макромолекул. В последнее время для таких целей все чаще используется компьютерный анализ. Применение вычислительной техники сводит к минимуму субъективизм в построении моделей и позволяет систематически исследовать возможные конформационные состояния анализируемых молекулярных объектов. При этом выбор конкретного алгоритма в современном моделировании оказывает меньшее влияние на конечный результат, чем выбор имеющихся экспериментальных данных и использование ограничивающих условий.

На рис. I.18 представлена современная модель пространственной структуры 70S рибосомы E. coli, разработанная в лаборатории Д. Франка (США) с учетом данных, которые были получены с помощью всех вышеперечисленных методов.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.