Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Работа выхода электронов из металла. Термоэлектронная эмиссия ⇐ ПредыдущаяСтр 5 из 5
Электроны проводимости в металлах образуют своеобразный электронный газ и участвуют в тепловом движении. Но поскольку они удерживаются в объеме металла, а не разлетаются из него, значит, вблизи поверхности металла существуют силы, действующие на электроны и направленные внутрь металла. Для того чтобы электрон вывести за пределы металла необходимо совершить определенную работу против удерживающих его сил. Работой выхода А электрона из металла называется работа, которую нужно совершить при удалении электрона из металла в вакуум. Электрон – заряженная частица и сила, препятствующая его выходу из металла, имеет электрическую природу. Существуют две наиболее вероятные причины возникновения этой силы, а следовательно, и работы выхода. Электрон, обладая достаточной кинетической энергией, может покинуть поверхность металла. На поверхности металла в результате этого индуцируется положительный заряд, отчего между электроном и металлом возникает сила притяжения, препятствующая удалению электрона. Работа этой силы представляет часть работы выхода. Электроны вследствие хаотического движения способны пересекать поверхность металла и удаляться от нее на малые расстояния. При этом число электронов, покидающих поверхность металла, равно числу электронов, возвращающихся в металл и на границе металл-вакуум поддерживается динамическое равновесие электронов. Над поверхностью металла, таким образом, существует электронная “атмосфера “ т.е. у поверхности образуется как бы двойной электрический слой (напоминающий плоский заряженный конденсатор. Рис.97)
Электрическое поле такого двойного электрического слоя заключено в малом зазоре над поверхностью металла, и прохождение электрона через этот двойной электрический слой сопровождается совершением определенной работы, связанной с разностью потенциалов А = е φ. Величину φ называют потенциальным барьером. Полная работа выхода электрона обуславливается обеими этими причинами. Если электрон внутри металла имеет кинетическую энергию , то он может покинуть объем металла. Работа выхода для металлов имеет порядок величины несколько эВ. Энергия же теплового движения электронов в металле при комнатной температуре (Т ≃ 3000К) имеет величину порядка ∼ 0, 03 эВ. Поэтому подавляющее большинство электронов будет связано в пределах металла. Однако, если электронам сообщить дополнительную энергию, то часть из них получает возможность покинуть металл и мы наблюдаем явление испускания электронов, называемое электронной эмиссией. Различают различные типы электронной эмиссии. Если электроны получают энергию за счет тепловой энергии при повышении температуры, то такая эмиссия называется термоэлектронной. При подведении энергии светом наблюдается фотоэмиссия, при бомбардировке поверхности какими-либо частицами наблюдается вторичная электронная эмиссия. Эмиссия под действием сильного электрического поля называется автоэлектронной. Термоэлектронную эмиссию можно наблюдать на электронной лампе – электровакуумном диоде (рис. 98), состоящим из анода А и накаливаемого катода К, включенных в электрическую цепь. Ток диода (анодный ток) имеет зависимость “степени 3/2” I = c· U3/2, где U – анодное напряжение; с – const. Плотность тока насыщения, когда все вылетающие с катода электроны (при данной температуре катода) достигают анода, определяют по формуле Ричардсона-Дэшмана , где А – постоянная Ричардсона-Дэшмана =6, 02·105А/м2·К2, Т – абсолютная температура катода, – работа выхода материала катода, k – постоянная Больцмана.
Электрический ток в газах
Газы, состоящие из нейтральных молекул и атомов, не проводят электрический ток. Для возникновения электропроводности газов они должны быть ионизированы. Ионизацией молекулы или атома называется процесс отщепления или отрыва от них одного или нескольких электронов в результате чего возникают положительный ион и электроны. Если нейтральный атом и молекула присоединяют электрон, то возникает отрицательный ион. Процесс, обратный ионизации, т.е. такой, при котором электроны, присоединяясь к положительному иону, образуют нейтральную молекулу или атом, называется рекомбинацией. Для ионизации молекулы (атома) небходимо совершить работу ионизации Аi против сил притяжения между вырываемым электроном и атомным остатком. Эта работа зависит от вида атома, кратности ионизации, энергетического состояния. Потенциалом ионизации φ i называется разность потенциалов в ускоряющем поле, которую должна пройти заряженная частица, чтобы накопить энергию, равную работе ионизации . Ионизация газов вызывается бомбардировкой его атомов и молекул заряженными частицами (электронами, ионами, α -частицами), нейтронами, электромагнитным излучением. Газовым разрядом называется процесс прохождения электрического тока через газ. Различают самостоятельный и несамостоятельный газовые разряды. Предположим, что на газовый промежуток действует какой-либо ионизатор (например, ультрафиолетовые или рентгеновские лучи, падающие на катод и выбивающие из него фотоэлектроны), в результате чего газ становится электропроводящим и в цепи потечет ток (рис. 99а). Увеличение анодного напряжения приведет к изменению тока в цепи. Вольтамперную характеристику можно разделить на 4 участка (рис. 99б). На первом участке кривой при небольших напряжениях выполняется закон Ома. Плотность тока в газовом промежутке равна , где n0 – число пар противоположно заряженных частиц в единице объема; u+ и u- - подвижность этих частиц; е – заряд электрона; Е – напряженность поля. На 2-м участке кривой наблюдается отклонение от закона Ома, вызванное убыванием концентрации ионов в газе и ток достигает насыщения IН при некотором значении UН. Увеличение напряжения на участке 3 кривой не приводит к увеличению тока, т.е. все образующиеся в газе электроны и ионы достигают анода и катода. Газовый разряд, который поддерживается вследствие действия внешнего ионизатора, получил название несамостоятельного. Если в одном из режимов разряда на участках кривой 1-2-3 действие внешнего ионизатора прекратить, то разряд прекратится. Дальнейшее увеличение анодного напряжения приводит к резкому возрастанию анодного тока. Это происходит вследствие того, что электроны под действием поля приобретают энергию, достаточную для ионизации молекул и атомов газа. Процесс такой ионизации носит лавинный характер.
За время свободного пробега в сильном электрическом поле электрон(e) успевает приобрести энергию, достаточную для того, чтобы столкнувшись с молекулой(M), вызвать ее ионизацию. При этом образуется положительный ион и добавочный электрон. Эти два электрона в свою очередь набрав нужную энергию ионизируют два атома, а образовавшиеся (2+2) электрона ионизируют следующие 4 атома и удвоят количество электронов и т.д. Таким образом, происходит лавинообразное размножение первичных ионов, созданных внешним ионизатором, и усиление разрядного тока как показано на рис. 100. Самостоятельным газовым разрядом называется электрический разряд в газе, который продолжается после прекращения действия внешнего ионизатора. Для существования самостоятельного газового разряда необходимо, чтобы электронные лавины поддерживали сами себя, т.е. чтобы в газе происходил еще и другой процесс, непрерывно воспроизводящий новые электроны взамен ушедших на анод. Такими могут быть процессы вторичной электронной эмиссии с катода в результате его бомбардировки ускоренными положительными ионами, фотоэффект, соударения положительных ионов с нейтральными молекулами и атомами.
Виды газовых разрядов: Тлеющий – наблюдаемый при давлениях 0, 1 – 0, 01 мм. рт. ст., применяется в газовых трубках, лампах дневного света (красное свечение у неона, синевато-зеленое – у аргона, желтоватые – у натрия). Искровой разряд – возникает между электродами при сильных полях – на воздухе Екрит ≃ 3·106 В/м или 30 кВ/см, в вакууме Екрит выше. Коронный разряд – когда вследствие высокой напряженности на острие электрода начинает развиваться лавинный процесс, но вследствие снижения напряженности поля по мере удаления от острия эта лавина не достигает анода. Молния – вид искрового разряда. Токи 104 - 5 ·105 А. Δ U 108- 109 В, длительность мкс., заряд 0, 1 – 200 Кл. Сильное разогревание воздуха приводит к возникновению ударной звуковой волны – грому. Дуговой разряд – при низком сопротивлении цепи искровой разряд переходит в дуговой, который протекает при высоких токах в десятки и сотни ампер. Понятие о плазме
Известны 3 состояния вещества – твердое, жидкое и газообразное. Плазма – это четвертое состояние вещества и при том наиболее распространенное в природе. Солнце и звезды представляют собой сгустки плазмы. Ионосфера Земли также представляет собой плазму (на высоте от 60 до 20000 км). Плазмой называется особое состояние вещества, важнейшим свойством которого является высокая степень (доходящая до полной) ионизации вещества (степень ионизации α – это отношение числа ионизированных частиц к их первоначальному количеству). Различают: слабоионизированную (α ≃ долям %), умеренно ионизированную (α ≃ единицы %) и полностью ионизированную плазму (α ≃ 100%). Слабоионизированная плазма наблюдается в ионосфере. Полностью ионизированная высокотемпературная – на Солнце и горячих звездах. В лабораторных и промышленных условиях плазма создается в газовых разрядах. Важное свойство плазмы – квазинейтральность. Способы получения плазмы - термический, газоразрядный и фотоионизационный. При температуре t ≥ 100000 вещество существует в виде плазмы.
Примеры использования и наблюдения плазмы: - молния, северное сияние, искра короткого замыкания; - газоразрядные трубки рекламы, МГД – генераторы для прямого преобразования тепловой энергии в электрическую, и. наконец, возможность осуществления термоядерной реакции синтеза ядер водорода.
|