Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Закон Джоуля-Ленца в дифференцированной и интегральной форме






    Опытом установлено, что если в проводнике течет ток, то работа сторонних сил расходуется на его нагревание. Предполо­жим, что на концах участка проводника имеется разность потен­циалов U = φ 1 – φ 2.

    Тогда работа по переносу заряда Q на этом участке равна

    A = Q (φ 1 – φ 2) = QU.

     

    Если ток постоянный, то

    и

    A = I · U · t.

    Эта работа равна количеству теплоты Q, и формула Q = I · U · t вы­ражает закон Джоуля-Ленца в интегральной форме.

    Используя выражение закона Ома получим

    .

    Преобразуем закон Джоуля–Ленца. Введем плотность тепловой мощности w – величину, равную энергии, выделяемой за время t прохождения тока в единице объема проводника:

    ,

    где S - сечение, l - длина проводника. Подставляя Q = I2 R t и , получим .

    Здесь - плотность тока, , и учитывая, что j = γ E, получим

    .

    Это есть выражение закона Джоуля-Ленца в дифференциальной форме. Плотность тепловой мощности в проводнике, по которому течет ток, прямо пропорциональна квадрату напряженности поля в проводнике. Коэффициентом пропорциональности является удель­ная проводимость проводника.

     

     

    Вывод законов Ома и Джоуля-Ленца из классических электрон­ных представлений

    Какова природа носителей тока в металлах? В 1901 г. Рикке проделал опыты: через 3 цилиндра, установленных друг на друга в течение 3-х лет пропускал постоянный ток. Был пропущен заряд, равный 3, 5 ·106 Кл. Взвешивание показало неизменный вес цилинд­ров. Исследование торцов цилиндров не показало следов переноса вещества. Из этого был сделан вывод, что носители заряда не ионы, а открытые Томпсоном в 1897 г. электроны.

    Чтобы отождествить носители заряда с электронами, нужно было определить знак и величину удельного заряда носителей.

    Если в металле имеются легко перемещающиеся заряженные частицы, то при торможении металлического проводника эти час­тицы должны некоторое время продолжать двигаться по инерции, в результате чего в проводнике возникнет импульс тока и будет пе­ренесен некоторый заряд.

    Мандельштам и Папалекси в 1913 г. проделали такой опыт – они приводили в быстрое крутильное колебание катушку с прово­дом вокруг ее оси. К концам катушки подключили телефон, в кото­ром был слышен звук, обусловленный импульсами тока. Был полу­чен качественный результат – зарегистрирован импульс тока.

    Толмен и Стюарт в 1916 г. получили количественный ре­зультат. Катушка с проводом длиной 500 м приводилась во враще­ние со скоростью v=300 м/с. Катушка резко тормозилась и с по­мощью баллистического гальванометра измеряли заряд, протекав­ший в цепи во время торможения. Вычисленное значение отношения заряда к массе e/m полу­чалось очень близким для электронов. Таким образом было доказано, что носителем тока являются электроны. Исходя из представлений о свободных электронах была создана классическая теория электро­проводности металлов в предположении, что:

    - электроны в металле ведут себя подобно молекулам иде­ального газа;

    - движение электронов подчиняется законам классической механики;

    - взаимодействие электронов сводится к соударениям с ио­нами кристаллической решетки;

    - силами взаимодействия между электронами можно пре­небречь и они между собой не сталкиваются;

    - электроны в отсутствие электрического поля движутся хаотически.

    Вычислим плотность тока j в проводнике, возникающего под действием поля напряженностью Е.

    По определению плотность тока j = n·e·< v> - это заряд, переносимый через единицу площади S = 1м2 за единицу времени t=1 с; n – концентрация электронов, е – заряд элек­трона, ·< v> - средняя скорость упорядоченного движения электро­нов.

    На каждый электрон действует сила F = eE = ma, поэтому электрон приобретает ускорение и к концу свободного про­бега он достигнет скорости

    , а средняя скорость

    < v> =vmax/2

    Если < vT> - средняя скорость теплового хаотичного движе­ния электронов, а средняя длина свободного пробега электронов < λ >, то среднее время между соударениями < t> = . Подставляя < t> в формулу для < v> получим:

    .

    Подставляя < v> в формулу для j, получим

    ,

    т.е. плотность тока прямо пропорциональна Е, а это и есть выраже­ние закона Ома в дифференциальной форме. Если положить, что

    то

    j = γ E.

    Удельная проводимость γ ~ n и < λ >, < vт> ~ T, поэтому проводимость снижа­ется с ростом температуры, а удельное сопротивление по­вышается с ростом температуры. К концу свободного пробега электрон приоб­ретает кинетическую энергию

    Предполагается, что вся энергия при соударении передается узлу кристаллической решетки и переходит в тепло. За 1 с электрон ис­пытывает < vT> / < λ > cоударений, а значит выделяет во столько же раз больше тепла. Если в единице объема n электронов, то в еди­нице объема за единицу времени выделится количество тепла

    .

    Таким образом, - выражение закона Джоуля-Ленца в дифференциальной форме.

     

    Закон Видемана-Франца. Затруднения классической электрон­ной теории

    Известно, что металлы наряду с высокой электропроводностью обладают также большой теплопроводностью. Видеман и Франц в 1853 г. эмпирически установили закон: отношение коэффициента теплопроводности χ к коэффициенту электропроводности γ для всех металлов приблизительно одинаково и прямо пропорционально аб­солютной температуре

    .

    Таким образом, классическая электронная теория хорошо объясняет существование электрического сопротивления металлов, законы Ома и Джоуля-Ленца, позволяет выразить удельную тепло­проводность через атомарные постоянные металла, объясняет зави­симость электропроводности от температуры и позволяет понять связь между теплопроводностью и электропроводностью металлов.

    Однако в некоторых вопросах, классическая электронная теория приходит к выводам, находящимся в противоречии с опы­том.

    1. Исходя из классической электронной теории удельная электропроводность равна

    ,

    откуда

    , но ,

    т.е. < vT> ∼ .

    Следовательно, по теории ρ ∼ , тогда как на практике

    ,

    т.е. удельное сопротивление пропорционально первой степени тем­пературы Т.

    Кроме того, согласно классической электронной теории удельное сопротивление ρ должно монотонно уменьшаться при охлаждении, оставаясь при всех температурах по значению конечным. Это и наблюдается при сравнительно высоких температурах. Однако при достаточно низ­ких температурах удельное сопротивление перестает зависеть от температуры и достигает некоторого предельного значения, кото­рое называют остаточным сопротивлением (велико у сплавов, су­ществует у чистых металлов и тем меньше, чем чище металл и меньше структурных дефектов).

    Если понижать температуру еще ниже, то в некоторых веществах наблюдается явление сверхпроводи­мости, т.е. удельное сопротивление внезапно скачком уменьшается прак­тически до нуля (рис. 96). В сверхпро­водниках однажды возбужденный электрический ток может длительно существовать без источника тока (в течение нескольких суток). В таком состоянии не выполняется за­кон Ома.

     

    2. Другим затруднением классической электронной теории металлов может служить теория теплоемкости кристаллов. Со­гласно этой теории “электронный газ” металлов должен обладать молярной теплоемкостью . Добавляя эту теплоемкость к тепло­емкости кристаллической решетки, составляющей 3R, получим для молярной теплоемкости металла значение (9/2)R. Таким образом, согласно классической электронной теории молярная теплоемкость металла должна быть в 1, 5 раза выше, чем у диэлектриков. Однако на практике их молярные теплоемкости практически не различа­ются. Объяснение этих различий и явлений дается в рамках кванто­вой теории металлов.

    В классической теории неверным является предположение, что электроны проводимости подчиняются законам статистики Максвелла-Больцмана и что для них справедлив закон распределе­ния энергии Максвелла. На самом деле они подчиняются законам квантовой статистики и закону распределения энергий Ферми-Ди­рака.

    Энергия электронов в металлах слабо зависит от темпера­туры и теплоемкость электронного газа оказывается близка к нулю, поэтому наличие электронного газа в металлах практически не ска­зывается на теплоемкости.

    Далее, в классической электронной теории не учитывается взаимодействие электронов друг с другом, а их взаимодействие с решеткой металла описывается с помощью представления о соуда­рениях. При низких температурах взаимодействие между электро­нами начинает играть решающую роль. Кроме того, оказалось, что взаимодействие электронов с решеткой имеет иной характер – электроны движутся в периодическом поле электрического потен­циала решетки.

    И, наконец, движение электронов в металлах подчиняется законам квантовой, а не классической механики.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.