Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Электрический ток. Электрическим током называют всякое упорядоченное движение электрических зарядов
Электрическим током называют всякое упорядоченное движение электрических зарядов. При отсутствии электрического поля носители тока совершают хаотическое (тепловое) движение в проводящей среде. При включении же электрического поля свободные электрические заряды перемещаются: ² положительные² - по полю, ² отрицательные² - против поля, т.е. в проводнике возникает электрический ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела, то возникает так называемый конвекционный ток. Носители тока в металлах – электроны, в электролитах – ионы, в газах – ионы и электроны. За направление тока условились считать направление движения положительно заряженных частиц. Поэтому направление тока в металлах противоположно направлению движения электронов. Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока - заряженных частиц, способных перемещаться упорядоченно, а с другой - наличие электрического поля, энергия которого, каким-либо образом восполняясь, расходуется на их упорядоченное движение. Для количественной характеристики электрического тока служат две основные величины: сила тока и плотность тока. Сила тока I- скалярная физическая величина, равная электрическому заряду, проходящему через поперечное сечение проводника в единицу времени:
I = . (16.1)
Единицей силы тока служит ампер (А). При токе в 1 А через полное сечение проводника проходит заряд в 1 Кл за время 1 с. Электрический ток может быть обусловлен движением как положительных, так и отрицательных носителей. Перенос отрицательного заряда в одном направлении эквивалентен переносу такого же по величине положительного заряда в противоположном направлении. Если ток создается носителями обоих знаков, причем за время dt через данную поверхность положительные носители переносят заряд dq+ в одном направлении, а отрицательные – заряд dq- в противоположном направлении, то
I = + = I+ + I-. (16.2)
Таким образом, сила тока I в таком проводнике складывается из сил тока, создаваемых положительными и отрицательными зарядами: I = I+ + I-. Следует отметить, что электрическое поле, вызывающее в проводнике постоянный ток, по своим свойствам отличается от электростатического поля: - это поле существует как внутри проводника, так и вне его, тогда как электростатическое поле, создаваемое неподвижными зарядами на проводнике, существует только вне проводника, а внутри проводника отсутствует; - потенциалы разных точек проводника с током различны, тогда как потенциалы всех точек на поверхности проводника, находящегося в электростатическом поле, одинаковы; - линии напряженности стационарного электрического поля внутри проводника с током параллельны его оси, а на поверхности проводника расположены наклонно к его поверхности, тогда как линии напряженности электростатического поля перпендикулярны поверхности проводника. Физическая величина, определяемая силой тока dI через расположенную в данной точке перпендикулярную к направлению движения носителей тока площадку dS^, отнесенной к величине этой площадки, называется плотностью тока: j = . (16.3) Единица плотности тока есть ампер на квадратный метр (А/м2). Рассмотрим сначала простейший случай, когда все носители тока одинаковы (например, электроны в металлах). Выделим мысленно в среде, по которой течет ток, произвольный бесконечно малый объем и обозначим через средний вектор скорости рассматриваемых носителей в этом объеме. Его называют средней, дрейфовой или упорядоченной скоростью движения носителей тока. Обозначим далее через n концентрацию носителей тока, т.е. их число в единице объема. Проведем бесконечно малую площадку dS, перпендикулярную к скорости . Построим на ней бесконечно короткий прямой цилиндр с высотой v dt, как указано на рисунке 20. Все частицы, заключенные внутри этого цилиндра, за время dt пройдут через площадку dS, перенеся через нее в направлении скорости электрический заряд dq = n e v dSdt, где е – заряд одной частицы (например, электрона). Таким образом, через единицу площади за единицу времени переносится электрический заряд j = n e v. Вектор
= n e (16.4)
называют вектором плотности электрического тока. Скаляр j есть заряд, переносимый в единицу времени через единичную площадку, перпендикулярную к току. Направление вектора совпадает с направлением упорядоченного движения положительных зарядов. В случае нескольких типов зарядов, создающих ток, плотность тока определяется выражением
= , (16.5)
где суммирование ведется по всем типам носителей тока (, , означают концентрацию, заряд и упорядоченную скорость i-го носителя). Зная вектор плотности тока в каждой точке интересующей нас поверхности S, можно найти и силу тока через эту поверхность как поток вектора :
I = = = , (16.6)
где ( - единичный вектор нормали к площадке dS), jn – проекция вектора плотности тока на направление нормали . Сила тока I является величиной скалярной и алгебраической. Ее знак, как видно из формулы (16.6), определяется, кроме всего прочего, выбором направления нормали в каждой точке поверхности S, т.е. выбором направления векторов . Последняя формула остается верной и в том случае, когда площадка dS не перпендикулярна к вектору . Чтобы убедиться в этом, достаточно заметить, что составляющая вектора , перпендикулярная к вектору , через площадку dS электричества не переносит.
|