Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Матричный метод решения СЛАУ
Рассмотрим СЛАУ, в которой число уравнений совпадает с числом неизвестных, и запишем ее в виде . Если определитель основной матрицы этой системы отличен от 0, то существует обратная матрица , причем . Умножим обе части равенства слева на и получим равенство . Так как первые 2 сомножителя в левой части этого уравнения равны единичной матрице и тем самым сокращаются, то мы приходим к формуле . (2) В качестве примера решения системы матричным методом можно рассматривать пример 2 из предыдущей лекции. Заметим, что рассмотренные методы – Крамера и матричный не являются универсальными методами. Их можно применять только в том случае, когда число уравнений и число неизвестных совпадают, и определитель основной матрицы не равен 0.
|