![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Точность коэффициентов регрессии. Доверительные интервалы ⇐ ПредыдущаяСтр 4 из 4
Оценки коэффициентов регрессии зависят от используемой выборки значений переменных x и y и являются случайными величинами. Для характеристики точности полученных оценок можно использовать стандартные ошибки коэффициентов регрессии. Под стандартной ошибкой коэффициента регрессии понимается оценка стандартного отклонения функции плотности вероятности данного коэффициента. Стандартные ошибки коэффициентов регрессии sbi определяются соотношениями
Величину
где Aij - алгебраическое дополнение к элементу ij матрицы X¢ X). Сопоставляя оценки параметров и их стандартные ошибки, можно сделать вывод о надежности (точности) полученных оценок. Для оценки статистической значимости коэффициентов регрессии применяется t-критерий Стьюдента, основанный на том факте, что отношения
Согласно t-критерию Стьюдента, выдвигается «нулевая» гипотеза H0 о статистической незначимости коэффициента уравнения регрессии (т. е. о статистически незначимом отличии величины а или bi от нуля). Эта гипотеза отвергается при выполнении условия t > tкрит, где tкрит определяется по таблицам t-критерия Стьюдента по числу степеней свободы k1 = n-p-1 (p - число независимых переменных в уравнении регрессии) и заданному уровню значимости α. t-критерий Стьюдента применяется в процедуре принятия решения о целесообразности включения фактора в модель. Если коэффициент при факторе в уравнении регрессии оказывается незначимым, то включать данный фактор в модель не рекомендуется. Отметим, что это правило не является абсолютным и бывают ситуации, когда включение в модель статистически незначимого фактора определяется экономической целесообразностью. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Доверительные интервалы для параметров bi уравнения линейной регрессии определяются соотношениями:
Величина t1-α, n-2 представляет собой табличное значение t-критерия Стьюдента на уровне значимости α при степени свободы n–2. Если в границы доверительного интервала попадает ноль, т. е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается равным нулю, так как он не может одновременно принимать и положительное, и отрицательное значения. Точность полученного уравнения регрессии можно оценить, анализируя доверительный интервал для функции регрессии, т. е. для среднего значения Доверительный интервал для функции регрессии определяется соотношениями
где
ỹ 0 – точное значение групповой средней; X0 – вектор, составленный из заданных значений независимых переменных X0 = (1, x10, x20,..., xp0 ). Доверительный интервал для индивидуальных значений зависимой переменной y*0 определяется соотношениями
где
есть стандартная ошибка индивидуальных значений зависимой переменной y*0.
Контрольные вопросы 1. Что понимается под множественной регрессией? 2. Какие задачи решаются при построении уравнения регрессии? 3. Какие задачи решаются при спецификации модели? 4. Какие требования предъявляются к факторам, включаемым в уравнение регрессии? 5. Какие функции чаще используются для построения уравнения множественной регрессии? 6. Какой вид имеет система нормальных уравнений метода наименьших квадратов в случае линейной регрессии? 7. Как проверяется значимость уравнения регрессии и его коэффициентов? 8. Что такое стандартизированные переменные? 10. Как оценивается значимость факторов? 11. Каковы последствия неправильной спецификации модели? 12. К чему приводит отсутствие в уравнении существенной независимой переменной?
|