![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проверка качества уравнения регрессии. F-критерий Фишера
Как и в случае парной регрессии для оценки качества полученного множественной уравнения регрессии (3) можно использовать коэффициент детерминации, представляющий собой отношение объясненной части D(ŷ) дисперсии переменной у ко всей дисперсии D(y)
Коэффициент детерминации R2 принимает значения в диапазоне от нуля до единицы 0 ≤ R2 ≤ 1 и показывает, какая часть дисперсии результативного признака y объяснена уравнением регрессии. Чем выше значение R2, тем лучше данная модель согласуется с данными наблюдений. Оценка статистической значимости уравнения регрессии (а также коэффициента детерминации R2) осуществляется с помощью F-критерия Фишера
Согласно F-критерию Фишера, выдвигаемая «нулевая» гипотеза H0 о статистической незначимости уравнения регрессии отвергается при выполнении условия F > Fкрит, где Fкрит определяется по таблицам F-критерия Фишера по двум степеням свободы k1 = p, k2 = n - p - 1 и заданному уровню значимости α. Для оценки тесноты связи факторов с исследуемым признаком, задаваемой построенным уравнением регрессии
Коэффициент множественной корреляции R принимает значения в диапазоне 0 ≤ R ≤ 1. Чем ближе величина R к единице, тем теснее данная связь, тем лучше зависимость Коэффициент множественной корреляции может использоваться как характеристика качества построенного уравнения регрессии Величина коэффициента множественной корреляции не может быть меньше максимального парного индекса корреляции Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение В случае линейной зависимости (3) коэффициент корреляции R связан с парными коэффициентами корреляции
Использование коэффициента множественной детерминации R2 для оценки качества модели, обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину R2. Поэтому при большом количестве факторов предпочтительнее использовать, так называемый, скорректированный, улучшенный (adjusted) коэффициент множественной детерминации
При использовании При заданном объеме наблюдений и при прочих равных условиях с увеличением числа независимых переменных (параметров) скорректированный коэффициент множественной детерминации убывает. При небольшом числе наблюдений скорректированная величина коэффициента множественной детерминации R2 имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Отметим, что низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации R2 может быть обусловлено следующими причинами: – в регрессионную модель не включены существенные факторы; – неверно выбрана форма аналитической зависимости, не отражающая реальные соотношения между переменными, включенными в модель.
|