Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Пример простейшего линейного процесса
Наиболее часто в практике программирования требуется организовать расчет некоторого арифметического выражения при различных исходных данных. Например, такого: где x > 0 – вещественное, m – целое. Разработка алгоритма обычно начинается с составления схемы. Продумывается оптимальная последовательность вычислений, при которой, например, отсутствуют повторения. При написании алгоритма рекомендуется переменным присваивать те же имена, которые фигурируют в заданном арифметическом выражении либо иллюстрируют их смысл. Для того чтобы не было «длинных» операторов, исходное выражение полезно разбить на ряд более простых. В нашей задаче предлагается схема вычислений, представленная на рис. 1.2.
Рис. 1.2. Схема линейного процесса Она содержит ввод и вывод исходных данных, линейный вычислительный процесс, вывод полученного результата. Заметим, что выражение вычисляется только один раз. Введя дополнительные переменные a, b, c, мы разбили сложное выражение на ряд более простых. Разветвляющийся алгоритм содержит одно или несколько логических условий и имеет несколько ветвей обработки. Условное изображение разветвления представлено на рис. 1.3. Структура РАЗВЕТВЛЕНИЕ предусматривает проверку условия, после которого вычислительный процесс развивается по одной из двух ветвей (в зависимости от ответа на поставленный в условии вопрос). Каждый из путей (ветвей) ведет к общему выходу.
Рис. 1.3. Условное изображение разветвляющегося алгоритма
|