Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Пневматическая система передачи измерительной информации
Системы передачи измерительной информации с унифицированным пневматическим сигналом находят применение в тех отраслях промышленности, где по условиям техники безопасности нецелесообразно использование электрических систем передачи. Пневматическая система передачи обеспечивает надежную передачу информации на расстояние до 300 м, а при использовании специального усилителя мощности – до 600 м. При больших расстояниях между объектом и пунктом приема информации точность системы передачи информации уменьшается. Основными узлами ПИП является чувствительный элемент II и преобразователь «сила - давление» III. В качестве чувствительного элемента может быть использован любой чувствительный элемент, осуществляющий преобразование технологического параметра П в усилие.
Рис 6.1. Преобразователь «сила - давление» 1. Корректор нуля 2. Рычаг; 3. Сильфон; 4. Пневмосопротивление типа «сопло - заслонка; 5. Заслонка; 6. Сопло; 7. пневматический усилитель мощности; 8. Мембрана; 9. Пружина; 10. Специальная мембрана; 11. Пневмосопротивление. Преобразователь «сила - давление» состоит из корректора нуля – пружины 1, рычага 2, сильфона обратной связи 3, управляемого пневмосопротивления типа «сопло - заслонка» 4 и пневматического усилителя мощности 7. Управляемое пневмосопротивление 4 является индикатором перемещения рычага 2. Метание сопла производится через усилитель мощности 7 из линии выходного сигнала через постоянное пневмосопротивление 11. Поэтому сопротивление давление в камере Б всегда меньше, чем в камере А и В, на одно и то же значение, определяемое натяжением пружин 9. Преобразование технологического параметра П в пневматический сигнал осуществляется следующим образом. При отклонении преобразуемого параметра П от исходного значения изменяется сила , что приводит к перемещению рычага 2 относительно точки опоры О. Одновременно с рычагом перемещается и укрепленная на нем заслонка 5 относительно сопла 6. Это приводит к изменению зазора h между соплом и заслонкой. В результате зазор становится равным h1 и рычаг 2 занимает положение А (рис. 2). Этому положению заслонки соответствует давление на выходе сопла, которое после усиления в усилителе мощности подается в сильфон отрицательной обратной связи 3 и в канал связи. Изменение Pвых происходит до тех пор, пока этим займет положение В, при котором расстояние между соплом и заслонкой станет равным h2. Расстояние h2 меньше расстояния h на . Таким образом, в новом состоянии равновесия положение рычага уже не соответствует начальному, т.е. при работе преобразователя по схеме компенсаций усилий возникают перемещения, без которых преобразователь не может работать. Однако эти перемещения очень малы и определяются ходом заслонки относительно сопла (0, 01-0, 02 мм). Поэтому рычаг с заслонкой при малых усилиях остается практически в неизменном положении. В процессе работы усилителя мощности 7 за счет перемещения мембран 8 и 10 перепад давлений на пневмосопротивлении 11 остается всегда постоянным (4000 – 6500 Па), что увеличивает крутизну статической характеристики преобразователя типа «сопло - заслонка» (рис. 6.2(б)). Уравнения статической характеристики преобразователя «сила – давление» может быть получено из выражения, описывающего состояние равновесия рычага 2: (6.1)
Рис 6.2. (а) пневсопротивление и (б) статические характеристики.
Рис 6.3. Схема унифицированного преобразователя «сила – давление» 1-Т-образный рычаг, 2-пружина корректора нуля, 3-Г-образный рычаг, 4-ножевая опора, 5-управляемое пневмосопротивление, 6- сильфон обратной связи, 7- усилитель мощности.
где - усилие, развиваемое чувствительным элементом; - усилие, развиваемое сильфоном обратной связи. Представляя величину в виде (6.2) и решая совместно (6.1) и (6.2), получим (6.3) где Fэф – эффективная площадь сильфона обратной связи. Так как диапазон изменения унифицированного пневматического сигнала 0, 02 – 0, 1 МПа, то при Rx =0 путем натяжения пружины 1 корректора нуля осуществляют настройку нулевого сигнала преобразователя. В результате настройки зависимость (3) перемещается в виде: (6.4) Это уравнение представляет собой статическую характеристику преобразователя «сила - давление». Оно может быть преобразовано в управление статической характеристики ПИП, если принять во внимание статическую характеристику чувствительного элемента: (6.5) где k0 – коэффициент преобразователя чувствительного элемента. С учетом (6.5) статическая характеристика ПИП примет вид: (6.6) или (6.7) Для преобразователя, настроенного на заданный диапазон преобразования, статическая характеристика (6.7) может быть представлена в виде (6.8) Здесь -коэффициент преобразования ПИП, при П=Пмах и Рвых=0, 1Мпа. Классы точности ПИП с унифицированным пневматическим сигналом 0, 5-2, 5. В качестве приемников информации в пневматических системах передачи широко применяются вторичные приборы, принцип действия которых основан на методе уравновешивающего преобразования. Эти приборы входят в ГСП и обеспечивают принципиально более высокую точность измерений, чем приборы прямого действия. Промышленность выпускает показывающие и самопишущие вторичные приборы с диапазоном измерений 0, 02 –0, 1 МПа. Измеряемое давление P (рис. 6.4) преобразуется чувствительным элементом прибора – сильфоном 1 в силу N, под действием которой рычаг 2 и укрепленная на нем заслонка 3 перемещаются относительно сопла 4. Перемещение рычага 2 под действием указанных сил происходит до тех пор, пока момент М1, создаваемый силой N, не уравновесится моментом М2, создаваемым силой R. В состоянии равновесия, т.е. при М1=М2 (6.9) перемещение рычага прекращается.
Рис 6.4. Схема самопишущего измерительного прибора пневматической системы передачи измерительной информации В состоянии равновесия перемещение указателя по шкале пропорционально измеряемому давлению. С этой целью равенство (6.9) представим в виде (6.10) где b и a – расстояния от точек приложения сил R и N до оси вращения рычага. Принимая во внимание зависимости (6.11) и (6.12) преобразуем равенство (10): (6.13) где - деформация пружины, равная отклонению указателя; Fэф – эффективная площадь сильфона; С – жесткость пружины. В выражении (6.13) не величины, за исключением P- постоянные. Поэтому уравнение (13) может быть представлено следующим образом: (6.14) где . В настоящее время в промышленности освоено несколько модификаций вторичных приборов, простроенных по рассмотренной схеме. Шкала приборов процентная. Класс точности 1, 0.
|