Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Детекторы ядерных излучений
Это устройства для регистрации α - и β -частиц, рентгеновского и γ -излучения, нейтронов, протонов и т.п. Они служат для определения состава излучения и измерения его интенсивности, спектра энергии частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и распада нестабильных частиц. Фотографический метод исторически был первым способом обнаружения ядерных излучений. Метод основан на почернении фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого или хлористого серебра (АgВr или АgСl), содержащихся в фотоэмульсии, восстанавливают металлическое серебро подобно видимому свету, которое после проявления выявляется в виде почернения. Степень почернения фотоэмульсии (фотопластинки, плёнки) пропорциональна дозе излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. В настоящее время фотографический метод широко применяется в ядерной физике при исследовании свойств самых различных заряженных частиц, их взаимодействий и ядерных реакций. На этом принципе основано использование индивидуальных фотодозиметров. Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов Н+ и ОН-, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основана работа химических дозиметров гамма- и нейтронного излучения ДП-70 и ДП-70М (МП). Сцинтилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений. При возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляция). Количество вспышек пропорционально мощности дозы излучения. Рис. 2.1. Фотоголовка сцинтилляционного детектора ионизирующей радиации. Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем (ФЭУ), способным регистрировать каждую вспышку (рис. 2.1). В основу работы индивидуального измерителя дозы (ИД-11) положен сцинтилляционный метод обнаружения ионизирующих излучений. В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений. Ионизационный метод. Сущность его заключается в том, что под воздействием ионизирующих излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы, в результате чего электропроводность среды увеличивается. Если в нее поместить два электрода, к которым приложено постоянное напряжение, то между электродами возникает направленное движение ионов, т.е. возникает так называемый ионизационный ток. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений. Такие устройства называются детекторами излучений. В качестве детекторов в дозиметрических приборах используются ионизационные камеры и газоразрядные счетчики различных типов. Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик), усилитель ионизационного тока. Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик) 1, усилитель ионизационного тока (электрическая схема, включающая электрометрическую лампу 2, нагрузочное сопротивление 3 и другие элементы), регистрирующее устройство 4 (микроамперметр) и источник питания 5 (сухие элементы или аккумуляторы) (рис. 2.2).
Рис.2.2. Схема работы ионизационной камеры
Ионизационная камера представляет собой заполненный воздухом замкнутый объём, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры прилагается напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующей на камеру. Ионизационные камеры в зависимости от назначения и конструкции могут работать в импульсном и токовым (интегральном) режимах. Импульсные камеры используют для регистрации отдельных тяжелых заряженных частиц (α -частицы, протоны и т.д.). Удельная ионизация легких частиц (электроны, позитроны) сравнительно мала, поэтому регистрация их в импульсном режиме неэффективна. Токовые камеры применяют для измерения интенсивности всех типов излучения, которые пропорциональны среднему току, проходящему через камеру. Величина ионизационного тока пропорциональна энергии излучения, поэтому ионизационные камеры измеряют ток насыщения в единицу времени, т.е. мощность дозы данного излучения. Приборы градуируют в единицах мощности дозы. Значит, ионизационные камеры используют не только для измерения дозы излучения, но и ее мощности. Пропорциональные счетчики выгодно отличаются от ионизационной камеры тем, что начальное усиление первичной ионизации происходит внутри самого счетчика (Кгу=103 - 104). Наличие пропорциональности усиления в счетчиках позволяет определить энергию ядерных частиц и изучить их природу. Пропорциональные счетчики бывают торцового типа, например САТ-7 и САТ-8 (счетчик α -частиц торцовый, СИ-3Б и др.). Чтобы обеспечить проникновение в плоскость счетчика α – частиц, входное слюдяное окно делают очень тонким (4-10 мкм). Наполняют счетчик смесью неона с аргоном почти до уровня атмосферного давления. В счетчиках открытого типа рабочая полость сообщается с внешним воздухом. Такие счетчики работают при атмосферном давлении, они допускают непрерывные протекание или циркуляцию наполняющего их газа и поэтому их часто используют для регистрации активности газовых проб. Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой. Счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счётчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счётчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока. В газоразрядных счетчиках используют принцип усиления газового разряда. При отсутствии радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины, свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений. Счетчики Гейгера – Мюллера (газоразрядные счетчики) конструктивно почти не отличаются от пропорциональных счетчиков цилиндрического торцового типа. Основное отличие состоит в том, что внутренний объем счетчика Гейгера наполнен инертным газом Рис. 2.3. Схема включения счётчика Гейгера-Мюллера. при пониженном давлении (15-75 гПа), а работа осуществляется в области Гейгера, т.е. в режиме самостоятельного газового разряда (рис. 2.3). Счетчики для регистрации γ – излучения имеют некоторую особенность в конструкции. Регистрация γ –излучения возможна в результате выбивания вторичных электронов из катода счетчика на основе известных трех механизмов взаимодействия этого излучения с веществом: фотоэффекта, комптонэффекта, образования электронно–позитронных пар. Вторичные электроны (фотоэлектроны, электроны отдачи, электронно-позитронные пары), попадая в чувствительный объем счетчика, вызывают газовый разряд (ударную ионизацию), который и регистрируется радиометрическим устройством. Этот закон Брэгга-Грея используется также и для дозиметрии нейтронов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б, В), ДП-ЗБ, ДП-22В и ИД-1. Твердотельные дозиметры. В системе обеспечения радиационной безопасности широко используются твердотельные дозиметры. К последним относятся фотопленочные дозиметры, дозиметры, основанные на окрашивании твердых материалов, и, наконец, твердые вещества, активируемые нейтронами. В качестве примера твёрдотельных дозиметров можно привести полупроводниковые детекторы (ППД) ионизирующих излучений. Действие ППД основано на свойствах полупроводников проводить электрический импульс под действием ионизирующих излучений. Из всех полупроводников наиболее пригодны для детекторов монокристаллы германия и кремния.
|