Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формальная постановка задачи классификации






Будем использовать следующую модель задачи классификации. Ω – множество объектов распознавания (пространство образов). ω: ω Ω – объект распознавания (образ). g (ω): Ω → M, M = {1, 2,..., m } – индикаторная функция, разбивающая пространство образов Ω на m непересекающихся классов Ω 1, Ω 2,..., Ω m. Индикаторная функция неизвестна наблюдателю. X– пространство наблюдений, воспринимаемых наблюдателем (пространство признаков). x (ω): Ω → X – функция, ставящая в соответствие каждому объекту ω точку x (ω) в пространстве признаков. Вектор x (ω) - это образ объекта, воспринимаемый наблюдателем. В пространстве признаков определены непересекающиеся множества точек Ki X, i = 1, 2..., m, соответствующих образам одного класса. :  – решающее правило – оценка для g (ω) на основании x (ω), т.е. . Пусть x j = x( ω j ), j = 1, 2..., N – доступная наблюдателю информация о функциях g (ω) и x (ω), но сами эти функции наблюдателю неизвестны. Тогда (g j, x j), j  1, 2..., N – есть множество прецедентов.

Задача заключается в построении такого решающего правила , чтобы распознавание проводилось с минимальным числом ошибок. Обычный случай – считать пространство признаков евклидовым, т.е. X= Rl . Качество решающего правила измеряют частотой появления правильных решений. Обычно его оценивают, наделяя множество объектов Ω некоторой вероятностной мерой. Тогда задача записывается в виде min P .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.