Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Свойства коэффициента корреляции






    1. Коэффициент корреляции независимых или некоррелированных величин равен нулю.

    2. Коэффициент корреляции не меняется от прибавления к Х или У каких–либо постоянных (неслучайных) слагаемых, от умножения их на положительные числа.

    3. Если одну из случайных величин, не меняя другой, умножить на , то на умножится и коэффициент корреляции.

    4. Численно коэффициент корреляции заключен в пределах £ r £ 1. Если коэффициент корреляции отличен от нуля, то он своей величиной характеризует не только наличие, но и силу стохастической связи между Х и У. Чем больше абсолютная величина r, тем сильней корреляция между Х и У. Максимальная корреляция соответствует |r|=1. Это возможно, когда между случайными величинами существует строгая функциональная связь.

    5. Если r > 0, то величины Х и У с точностью до случайных погрешностей одновременно возрастают или убывают, если же r < 0, то с возрастанием одной величины другая убывает.

    Но это справедливо только для линейной зависимости У от Х. Т.е. зависимость между Х и У может быть строго функциональной (например, квадратичной) без следа случайности, а коэффициент корреляции все еще будет меньше 1. Таким образом, коэффициент корреляции есть показатель того, насколько связь между случайными величинами близка к строгой линейной зависимости. Он одинаково отмечает и слишком большую долю случайности, и слишком большую криволинейность этой связи.

    Если заранее, из общих соображений, можно предсказать линейную зависимость, то r является достаточным показателем тесноты связи между Х и У.

    Для случайных величин (большинство именно таких), подчиняющихся нормальному закону, равенство r = 0 означает одновременно и отсутствие всякой зависимости.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.