Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Задача №34
Побудувати три проекції наскрізних отворів
а) б) 3.3 Контрольний тест до інформаційного модуля 3
1. На якому рисунку зображені прямокутні проекції піраміди?
а) б) в)
2. Скільки ребер має заданий багатогранник?
а) 6; б) 7; в) 8.
3. Скільки граней має заданий багатогранник?
а) 6; б) 7; в) 5.
4. Яка грань багатогранника займає фронтальне положення?
а) ADC; б) BEF; в) DCEF
5. На якому рисунку задана точка А, яка належить грані багатогранника?
а) б) в)
6. На якому рисунку фігура перерізу багатогранника площиною α – чотирикутник?
а) б) в) г) ІНФОРМАЦІЙНИЙ МОДУЛЬ 4 МЕТРИЧНІ ЗАДАЧІ НА ПЕРЕТВОРЕНИХ ПРЯМОКУТНИХ ПРОЕКЦІЯХ
4.1 Метод заміни площин проекцій Розв’язання метричних задач можна звести до чотирьох основних типів: 1) перетворення прямої загального положення в пряму рівня; 2) перетворення прямої загального положення в проекціювальну; 3) перетворення площини загального положення в проекціювальну; перетворення площини загального положення в площину рівня. Найбільш поширені методи, що використовуються для цього – метод заміни площин проекцій та метод плоско-паралельного переміщення. Метод заміни площин проекцій полягає в тому, що вводиться допоміжна площина проекцій, яка перпендикулярна тільки до однієї з площин проекцій (горизонтальної Π 1, фронтальної Π 2, профільної Π 3) (рис. 4.1, 4.2).
Рисунок 4.1 – Система основних та додаткових площин проекцій: Π 4 – додаткова площина проекцій, що перпендикулярна тільки до Π 1
Для переведення відрізка прямої із загального положення в положення рівня для визначення, наприклад, натуральної довжини, необхідно ввести додаткову площину паралельно одній з проекцій відрізка (рис. 4.3, 4.4).
a
б
Рисунок 4.2 – Утворення плоскої моделі систем площин проекцій: а – проміжний етап трансформації; б – плоска модель, що утворена в результаті трансформації
Рисунок 4.3 – Введення додаткової площини проекцій для визначення довжини відрізка загального положення
Рисунок 4.4 – Визначення довжини відрізка за умови задання АВ (А1В1, А2В2)
Для того, щоб перетворити пряму загального положення в проекціювальне положення необхідно ввести допоміжну площину перпендикулярно до проекції відрізка, яка є його натуральною величиною (рис.4.5, 4.6). Якщо пряма займає загальне положення, то переведення в проекціювальне положення відбувається в два етапи: спочатку в пряму рівня, а потім в проекціювальну пряму.
Рисунок 4.5 – Перетворення прямої рівня в проекціювальну пряму (наочне зображення)
Рисунок 4.6 – Перетворення прямої рівня в проекціювальну пряму (комплексне креслення)
Для переведення площини із загального положення в проекціювальне та в площину рівня необхідно застосувати такий алгоритм (рис.4.7): 1) вводимо горизонталь або фронталь; 2) вводимо допоміжну площину проекцій перпендикулярно до горизонтальної проекції горизонталі; 3) переводимо площину в проекціювальне положення; 4) вводимо нову допоміжну площину паралельно площині в проекціювальному положенні; 5) переводимо площину в натуральну величину. Розглянемо геометричні підстави для розв’язання деяких метричних задач.
Рисунок 4.7 – Перетворення проекціювальної площини в площину рівня
Для визначення відстані між двома паралельними прямими необхідно перевести обидві прямі в проекціювальне положення (рис. 4.8). Якщо прямі займають загальне положення, то необхідно провести два послідовних перетворення: спочатку ввести додаткову площину для переведення прямих в натуральну величину, а потім ввести додаткову площину перпендикулярно до отриманих проекцій прямих.
Рисунок 4.8 – Визначення відстані між двома паралельними прямими
Рисунок 4.9 – Визначення відстані між двома мимобіжними прямими
Для визначення відстані між двома мимобіжними прямими необхідно знайти найкоротшу відстань. Для цього необхідно виконати перетворення таким чином, щоб одна з прямих зайняла проекціювальне положення, тобто спроекціювалася в точку. Перпендикуляр з цієї точки визначає шукану відстань (рис.4.9). Якщо обидві прямі початково займають загальне положення, то перетворення відбувається в два етапи: 1) вводиться додаткова площина проекцій таким чином, щоб одна з прямих спроекціювалась в натуральну величину; 2) вводиться додаткова площина перпендикулярно до отриманої натуральної величини. Для визначення відстані між точкою та площиною необхідно перетворити площину в проекціювальне положення та опустити перпендикуляр з отриманої проекції точки на пряму, що є проекцією площини (рис.4.10). Якщо площина займає загальне положення, то потрібно спочатку перевести задану площину в проекціювальне положення (рис.4.7).
Рисунок 4.10 – Визначення відстані між точкою та площиною Для визначення величини двогранного кута між площинами необхідно ввести додаткову площину перпендикулярно до ребра, при якому визначається кут, тобто перевести вказане ребро в проекціювальне положення. При цьому кожна площина спроекціюється в пряму (рис.4.11). Якщо ребро при двогранному куті займає загальне положення, то потрібно спочатку перевести його в натуральну величину, а вже потім – в точку.
Рисунок 4.11 – Визначення величини двогранного кута між площинами
Задачі для самостійного розв’язування
|