Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Лекция 2. Поверхностное натяжение и внутримолекулярное взаимодействие внутри фаз обусловливаютпроцессы смачивания
1.Смачивание 2.Растекание 3.Когезия 4.Адгезия. Поверхностное натяжение и внутримолекулярное взаимодействие внутри фаз обусловливают процессы смачивания, растекания, когезии и адгезии. Начальной стадией взаимодействия жидкостей с твердыми телами является процесс смачивания. По числу фаз, участвующих в процессе, различают два типа смачивания: а) иммерсионное смачивание, имеющее место при полном погружении твердого тела в жидкость, в таком случае в смачивании участвуют две фазы: жидкость и твердое тело; б) контактное смачивание, оно протекает с участием трех фаз: твердой, жидкой и газообразной – например, капля жидкости на твердой поверхности. Количественной мерой процесса смачивания является угол, образованный каплей с твердой поверхностью. Этот угол называют краевым углом смачивания и обозначают q. Значение q может меняться от 0 до 180 0. Величину угла смачивания отсчитывают между твердой поверхностью и касательной, проведенной к поверхности капли в точке соприкосновения всех твердой, жидкой и газообразной фаз. Измерение угла проводят со стороны жидкости:
Угол смачивания, который устанавливается при равновесии (жидкость-твердое тело –газ) зависит только от поверхностного натяжения на границе раздела фаз. Если рассматривать поверхностное натяжение как силу, действующую тангенциально к поверхности раздела фаз, то связь между поверхностным натяжением и углом смачивания можно выразить уравнением, предложенным Где Чем меньше угол смачивания, тем лучше смачивается поверхность. Если q - острый, т. е. cos q - > 0 - поверхность хорошо смачивается, если угол q - тупой, т.е сos q < 0, то поверхность смачивается плохо, угол 1800 – cos = -1, полное несмачивание. Для примера: кварц-вода - угол 00 (полное смачивание), графит –вода – 550, сера-вода –780, тальк-вода 690, но фторопласт-вода – 1080, парафин-вода –1060. Лучше смачивает жидкость, которая по полярности близка к материалу поверхности. Твердые поверхности, избирательно смачивающиеся водой, называются гидрофильными. У них краевой угол смачивания < 90 0. Те поверхности, у которых краевой угол смачивания > 900, называют гидрофобными или олеофильными. С термодинамической точки зрения смачивание твердой поверхности жидкостью приводит к образованию новой фазовой границы – твердое тело- жидкость вместо исходной - твердое тело-воздух и сопровождается уменьшением поверхностной энергии Гиббса. Поверхностное натяжение на границе твердое тело-воздух всегда больше, чем на границе твердое тело-жидкость, поэтому при смачивании всегда выделяется теплота. Из уравнения Юнга видно, что процессом смачивания можно управлять, изменяя поверхностные натяжения в системе. Наиболее эффективным методом является введение ПАВ в жидкую фазу или обработка твердой поверхности растворами ПАВ. Таким путем можно не только менять величину смачивания, но и произвести его инверсию, т.е. качественно изменить характер смачивания. Механизм инверсии смачивания связан с ориентацией молекул ПАВ на поверхностном слое. Если твердая поверхность первоначально гидрофильна, то адсорбированные на ней молекулы ПАВ взаимодействуют своими полярными группами с поверхностью, а неполярными цепями обращаются наружу, вследствие чего твердая поверхность становится гидрофобной. Например, при погружении стеклянной пластинки в раствор стеариновой кислоты в октане или бензоле на поверхности пластинки образуется монослой стеариновой кислоты. Если же твердая поверхность первоначально гидрофобна, то ориентация молекул ПАВ своими углеводородными цепями к ее поверхности делает материал гидрофильным. Инверсия смачивания имеет практическое применение, например, для предотвращения отсыревания гигроскопичных порошков. Если к порошку добавить ПАВ, то слой дифильных молекул, ориентированных наружу углеводородными цепями, создаст на частицах порошка защитную пленку, ослабляющую взаимодействие частиц порошка с водяными парами. Так, защищая удобрения от слеживаемости, к ним добавляют калиевые соли нафтеновых кислот, создающих на поверхности удобрений гидрофобную пленку. Моющее действие ПАВ связано с улучшением смачивания загрязненных поверхностей и тканей за счет понижения поверхностного натяжения при помощи ПАВ. На явлении избирательного смачивания основано явления флотации – метод обогащения различных руд. Если частицы не смачиваются жидкостью, силы флотации выталкивают их вверх, в противном случае частицы смачиваясь, проникают вглубь раствора. Явление флотации стало известно с 80-х годов прошлого века, когда случайно было обнаружено, что медная руда накапливается на поверхности породы, если на них имеется масляная пленка, а частицы пустой породы опускаются на дно. Поэтому при обогащении руды ее смешивают с флотореагентом, предварительно размалывая ее до 10 –5 –10-4 м. Образуется суспензия (пульпа), в которой пузырьки воздуха окружены масляной пленкой, и сними на поверхность всплывают частички меди. Флотореагенты, придающие частицам гидрофобность, называются коллекторами (собирателями). К ним относится например, сосновое масло и все ПАВ, которые взаимодействуя своей полярной группой с металлом, обращаются неполярной частью в воду и тем самым создают гидрофобную пленку за счет углеводородных радикалов R. Вместо того, чтобы добавлять к воде масло, можно создать на поверхности воды пену, энергично пропуская воздух через воду. Тогда гидрофобные частицы руды будут прилипать к пузырькам воздуха и удаляться вместе с пеной в отстойник. (Пенная флотация). 2.Растекание При нанесении на поверхность воды капли нерастворимой в ней жидкости в одних случаях происходит растекание капли, в других – оно отсутствует. Явление растекания обусловливается поверхностным натяжением на трех поверхностях раздела: воздух-вода sвг, вода-капля sвм, капля-воздух sмг. В системе самопроизвольно будет идти тот процесс, который приведет к минимуму энергии Гиббса. Если sвг< sвм+sмг, то растекания капли не произойдет и капля примет на поверхности воды округлую форму. Обратная картина наблюдается при соотношении sвг> sвм+sмг, Для уменьшения избытка поверхностной энергии должен идти процесс сокращения поверхности раздела воздух-вода и увеличения поверхностей раздела капля-воздух и вода-капля. Тогда капля расткается и принимает форму линзы. Мерой растекания служит коэффициент растекания, который равен разности: f = sвг – (sвм+sмг, ) где f – изменение энергии Гиббса, приходящееся на единицу площади в процессе растекания: f = DG /DS, где DS – площадь, по которой происходит растекание. Условие растекания можно представиить так: при f > 0 DG< 0, - происходит растекание при f < 0 DG> 0 - растекание отсутствует.
|