Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Характеристика ионизирующих излучений и радиоактивных веществ




Излучение, способное при взаимодействии с веществом прямо или косвенно создавать в нем заряженные частицы – ионы, относят к ионизирующим.

Радиоактивность – самопроизвольный распад атомных ядер химических элементов (урана, тория, радия и др.), что приводит до изменения их атомного номера и массового числа. При их распаде образуются разные частицы и электромагнитные излучения, которые способны ионизировать окружающую среду (вещество).

Ионизирующие излучения представляют собой α, β, γ и п, испускаемые радиоактивными веществами.

Альфа – излучение (α) представляет собой поток ядер гелия с низкой проникающей и высокой ионизирующей способностью. Пробег α – частиц в воздухе составляет 3 – 12 см, в ткани человеческого тела они проникают на десятые доли миллиметра. Энергия α – частиц находится в пределах 4,5 – 8 МэВ. Ионизирующая способность на 1 см пути в воздухе составляет несколько десятков тысяч пар ионов.

Бета – излучение (β) – поток β – частиц, электронов и позитронов. Ионизирующая способность около 100 пар ионов на 1 см пути, проникающая – до 14,5 метров в воздухе. Энергия β – частиц достигает до 10 мегаэлектроновольт.

Гама – излучение – это поток γ – квантов, представляющий собой электромагнитное излучение с длиной волны в пределах 0,001 – 0,1 А.

Ионизирующая способность небольшая – несколько пар ионов на 1 см пути, проникающая очень высокая, достигая в воздухе несколько сотен метров; γ – излучения могут проникать через бетонные стены большой толщины, пластины свинца и сквозь тело человека.

Нейтронное излучение (п) – поток нейтральных частиц. В зависимости от энергии подразделяется на тепловое (до 0,5 МэВ), быстрое (до 0,5 – 10 МэВ) и сверхбыстрое (свыше 10 МэВ). При соударении быстрых нейтронов с ядрами атомов образуются ядра отдачи. Быстрые нейтроны при взаимодействии с ядрами атомов теряют свою энергию и превращаются в медленные. Медленные и тепловые нейтроны при соударении с ядрами атомов вступают с ними в реакцию с образованием радиоактивных изотопов (наведенная радиация). При взаимодействии нейтронов с ядрами элементов могут возникнуть α – и β – излучения. Нейтронные излучения обладают огромной проникающей способностью.

Радиоактивность вещества характеризуется числом спонтанных распадов в единицу времени. Единицей измерения активности (С) является одно ядерное превращение в секунду, называемая беккерель (Бк).

Используется внесистемная единица, называемая кюри (Ки) и равная 3,7 ∙ 1010 ядерных превращений в секунду.

Производные единицы: милликюри (1 мКи = 1∙ 10-3 Ки), микрокюри (1 мкКи = 1∙ 10-6 Ки), нанокюри (1 нКи = 1∙ 10-9 Ки) и др.



Распад разноактивных веществ происходит для каждого вида с определенной скоростью. Число ядер данного элемента, которое распадается за единицу времени (А), пропорционально полному числу ядер (N) элемента

 

А = - dN / dt = λ∙N (1)

где λ – постоянная радиоактивного распада данного элемента.

Этот процесс можно описать формулой

 

Nt = N0 (- λ ∙ t) (2)

где N0, Nt – число радиоактивных ядер в начальный момент и через период времени t соответственно.

Чем большая доля общего числа атомов распадается в единицу времени, тем быстрее протекает распад радиоактивного элемента. Скорость радиоактивного распада постоянна для каждого данного элемента. Она не зависит от физических и химических условий, и наука не знает средств могущих изменять ее.

Для характеристики скорости распада принято пользоваться величиной периода полураспада, то есть времени, в течение которого половина первоначального числа атомов претерпевает радиоактивный распад.

Между периодом полураспада Т и постоянной распада λ существует определенная зависимость, которая выражается уравнением:

 

, (3)

где 0,693 = 1п 2.

Для различных радиоактивных изотопов постоянная полураспада колеблется в широких пределах: от ничтожных долей секунды до многих миллиардов лет.

Активность веществ (С) можно определить по формуле

 

С = λ ∙ N (4)

где N – количество радиоактивных атомов в веществе.

Характерным результатом взаимодействия радиоактивных излучений с веществом является ионизация. Заряженные альфа – и бета – частицы, испускаемые радиоактивными веществами, взаимодействуют с атомами среды. При этом один электрон выбивается из атома, и атом, потерявший электрон, становится положительно заряженным ионом. Отрицательно заряженный электрон, двигаясь в среде, в свою очередь может производить ионизацию других атомов среды, то есть вторичную ионизацию, и т.д.



Средняя энергия, необходимая для образования одной пары ионов, называется средней работой ионизации. Средняя работа ионизации зависит от характера ионизируемой среды и других факторов.

Взаимодействие гамма – излучения с веществом иное и более сложное, чем альфа – и бета – излучений.

Не вдаваясь в подробное рассмотрение, следует отметить, что ионизация среды при воздействии гамма – лучей производится главным образом вторичными электронами, возникающими в результате взаимодействия гамма – лучей с атомами вещества среды.

Поглощенную энергию радиоактивных излучений в любой среде (так же как и действие рентгеновских лучей) принято характеризовать величиной, называемой «дозой». Доза излучения определяется как энергия, пглащенная единицей массы вещества. Величина поглощенной дозы зависит от свойств излучения и поглощающей среды.

 

Дпог = dE / dm (5)

где dE – средняя энергия, поглощенная веществом в элементарном объеме;

dm – элементарный объем вещества.

Единицей поглощенной дозы (в системе СИ) принят джоуль на килограмм (Дж/кг) – Грей (Гр). Грей – поглощенная доза излучения, есть энергия в 1 Дж какого – либо ионизирующего излучения, которая передана одному килограмму вещества. Часто применяют внесистемную единицу поглощения – рад. 1 рад = 0,01 Гр.

Для характеристики дозы за эффектом ионизации в воздухе введено понятие экспозиционная доза (Дэкс)

 

Дэкс = dQ / dm (6)

где dQ – суммарный заряд всех ионов одного знака, которые образовались в элементарном объеме воздуха при его облучении;

dm – масса элементарного объема воздуха.

Единицей экспозиционной дозы принят кулон на килограмм (Кл/кг). Внесистемной единицей экспозиционной дозы принят рентген (Р).

Эффект воздействия ионизирующих излучений на организм зависит не только от поглощенной дозы, но также вида радиоактивного излучения и его энергии.

Поэтому для оценки радиационной опасности хронического (длительного) облучения различного вида радиоактивных излучений введена эквивалентная доза (Дэкв), которая определяется по формуле

 

Дэкв = Дпог , Зв (бэр) (7)

где Дпог – поглощенная доза, Гр, (рад);

- средний коэффициент качества радиоактивного излучения (см. таблицу 1).

Единицей измерения эквивалентной дозы принят в системе CИ 1Зв = Дж/кг, вне системная единица – бэр, 1 бэр = 0,01 Зв.

Таблица 1

Значения среднего коэффициента качества

Вид излучения Коэффициент качества,
Рентгеновское и гамма – излучения
Электроны, позитроны, бета – излучения
Протоны с энергией меньше 10 МэВ
Нейтроны с энергией меньше 20 МэВ
Нейтроны с энергией 0,1 – 10 МэВ
Альфа – излучения с энергией меньше 10 МэВ
Тяжелые ядра отдачи

 

При одинаковых эквивалентных дозах степень поражения отдельных органов и тканей тела человека зависит от радиационной чувствительности этих органов и ткани. Поэтому введено понятие эффективной дозы (Е), которая определяется по формуле

 

Е = ΣДэкв.Т ∙ WТ (8)

 

где Дэкв.Т – эквивалентная доза в ткани или органе;

WТ – тканевой важный фактор (WТ для кишечника, легких – 0,12; для большинства внутренних органов – 0,05; для кожи и костей – 0,01; печень – 0,05; желудок – 0,12; мочевой пузырь – 0,05).

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал