Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методы синтеза альдегидов и кетонов.






Методы синтеза альдегидов:

1) Окислительные методы:

· Для получения альдегидов в лабораторных условиях часто используется реакция окисления первичных спиртов реагентами, представляющими собой комплексные соединения оксида хрома(VI)с третичными аминами, в частности, лучшими реагентами являются комплекс с пиридином (CrO3 · 2C5H5N, реагент Саррета — Коллинза) и хлорхромат пиридиния (C5H5N+CrO3Cl-, реагент Кори, PCC). Данные реагенты позволяют получать альдегиды с высоким выходом, а хлорхромат пиридиния также не затрагивает двойную связь. Для этих же целей применяют и другие селективные окислители, например оксид марганца(IV) MnO2, карбонат серебра на цеолите, а также диметилсульфоксид в присутствии основания.

· Как метод получения альдегидов может использоваться восстановительный озонолиз симметричных дизамещённых алкенов либо циклических алкенов (в данном случае реакция приводит в образованию диальдегида). Аналогичное превращение может быть проведено под действием смеси OsO4 и NaIO4.

· Также к данному типу реакций относится окисление вицинальных диолов йодной кислотой или тетраацетатом свинца.

· Важным методом также является гидроборирование — окисление алкинов, в ходе которого к алкину против правила Марковникова присоединяется диалкилборан (например, дисиамилборан), а полученный продукт окисляется щелочным раствором пероксида водорода, что приводит к образованию альдегида.

2) Восстановительные методы:

Ряд производных карбоновых кислот (хлорангидриды, сложные эфиры, нитрилы, амиды) могут быть восстановлены до альдегидов под действием специфических восстановителей.

· Так, например, в реакции Розенмунда хлорангидриды восстанавливают под действием водорода на палладиевом катализаторе. Аналогичное превращение можно провести под действием три (трет -бутокси) алюмогидрида лития.

· Сложные эфиры селективно восстанавливаются до альдегидов под действием диизобутилалюминийгидрида.

3) Синтез ароматических альдегидов:

Ароматические альдегиды могут быть синтезированы принципиально отличными методами, основанными на реакциях ароматического электрофильного замещения.

· Альдегидную группу можно ввести в ароматические соединения реакциями Гаттермана, Гаттермана — Коха, Вильсмейера — Хаака, Рихе и Раймера — Тимана. Исторически первая реакция Гаттермана — Коха (1897) применима к бензолу и его алкилзамещённым производным, которые вступают в реакцию с оксидом углерода(II) CO и хлороводородом HCl в присутствии AlCl3 и CuCl, давая соответствующие бензальдегиды (альдегидная группа вводится в пара -положение). Улучшенный метод (реакция Гаттермана) состоит в использовании цианида цинка Zn(CN)2 и соляной кислоты и позволяет формилировать фенолы и гетероароматические соединения. Для формилирования фенолов также используется реакция Раймера — Тимана. Введение альдегидной группы в ароматические ядра, активированные гидроксильной, алкоксильной или диалкиламинной группой, осуществляется по реакции Вильсмейера — Хаака с использованиемдиметилформамида и хлорокиси фосфора.

· Также ароматические альдегиды могут быть получены окислением метилзамещённых бензолов под действием ряда окислителей, в том числе оксида хрома(VI) CrO3, оксида марганца(IV) MnO2 и нитрата церия — аммония.

· Реакция Соммле позволяет окислять бензилгалогениды ArCH2X под действием уротропина с последующим гидролизом образующейся соли до альдегида. Данная реакция применима для синтеза разнообразных ароматических и гетероциклических альдегидов. Подобное превращение можно осуществить, также окисляя бензилгалогениды солями 2-нитропропана.

· Ароматические альдегиды можно получать из производных ароматических карбоновых кислот общими методами, однако существуют и специфические реакции. Например, реакция Стефена позволяет восстанавливать ароматические нитрилы хлоридом олова(II) SnCl2 с последующим гидролизом, что приводит к ароматическому альдегиду

4) Промышленные методы получения альдегидов

Известно много методов синтеза альдегидов, однако их использование в промышленности зависит во многом от доступности исходного сырья. Основными промышленными методами получения насыщенных алифатических альдегидов являются:

· гидроформилирование алкенов (оксосинтез);

· дегидрирование или окисление первичных спиртов;

· гидратация ацетилена;

· окисление этилена;

· окисление насыщенных углеводородов (С3, С4).

Также большое значение имеют некоторые специфические синтезы альдегидов, широко применяемых в парфюмерной промышленности.

Оксосинтез является наиболее важным процессом для получения альдегидов с тремя атомами углерода и выше. В этой реакции алкены реагируют с синтез-газом (CO+ H2) с образованием альдегида, содержащего на один атом углерода больше, чем исходный алкен. При использовании несимметричных алкенов образуется смесь продуктов, соотношение которых можно варьировать путём подбора катализатора.

5) Другие методы:

Альдегиды также можно получать реакциями гидратации алкинов (реакция Кучерова), пиролизом карбоновых кислот и их смесей в виде паров над оксидами некоторых металлов (ThO2, MnO2, CaO, ZnO) при 400—500 °C, гидролизом геминальных дигалогенопроизводных (если атомы галогена находятся у одного из крайних атомов углерода) и другими реакциями.

Методы синтеза кетонов:

  • Ароматические кетоны могут быть получены по реакции Фриделя-Крафтса.
  • Гидролизом кетиминов.
  • Из третичных пероксоэфиров перегруппировкой Криге.
  • Кислотным гидролизом виц-диолов.
  • Окислением вторичных спиртов.
  • Циклокетоны можно получить циклизацией Ружички.
  • Гидратация гомологов ацетилена (реакция Кучерова).
  • Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кислот с диалкилкупратами лития и алкилкадмиевыми соединениями:

· По реакции Губена — Гёша.

 

Заключение:

АЛЬДЕГИДЫ И КЕТОНЫ – органические соединения, содержащие фрагмент C=O (углерод, связанный двойной связью с кислородом, его называют карбонильным). У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O), а в кетонах – с двумя органическими группами (общая формула RСR =О).

Список использованной литературы:

1) https://www.e-reading.club/chapter.php/88413/50/Titarenko_-_Shpargalka_po_organicheskoii_himii.html

2) https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no34-aldegidy-stroenie-molekuly-formaldegida-izomeria-i-nomenklatura

3) https://sites.google.com/site/vikusakoval/home/himiceskie-svojstva-aldegidov

 

 

Часть 2. Практическая часть. Лабораторная работа. Методы синтеза, особенности строения и реакционной способности альдегидов и кетонов. Исследование физических и химических свойств ацетона, формальдегида и бензальдегида.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.