Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Регуляторные факторы эмбриогенеза






Эмбриогенез человека находится под жестким контролем, осуществляю щимся на разных уровнях.

1. Генетический уровень регуляции. В первую очередь, эмбриогенез на ходится под контролем генетических факторов. Они определяют все после­довательности процессов развития, а также определяют регуляторные ме­ханизмы, служат их основой. Зигота, бластомеры и все клетки зародыша содержат гены-регуляторы, которые принимают участие в управлении про­цессами развития. Эти гены именуют гомеозисными. Они обладают спо­собностью регулировать активность других генов. Выявлены также гены, определяющие сегментацию тела зародыша. Эти гены называются генами-гомеобоксами. Есть хроногены, т.е. гены, от действия которых зависит вре­мя наступления дифференцировки тех или иных клеток зародыша. Дея­тельность этих генов включается при достижении клеткой определенной пространственно-временной позиции. В то же время, в самих генах имеют­ся особые участки, включающие их (энхансеры), и участки, подавляющие экспрессию данного гена (сплансеры). Все указанные молекулярно-генети-ческие факторы и процессы определяют такие компоненты эмбриогенеза, как размножение, рост и запрограммированную гибель клеток, детермина­цию, дифференцировку, адгезию и миграцию клеток, эмбриональную ин­дукцию.

Внутриклеточный уровень регуляции.Он состоит в том, что в клет­ках синтезируются регуляторные вещества, которые способны регулиро­вать активность генома этих же клеток. Примером таких факторов явля­ются триггерные белки.

3. Эпигенетический уровень регуляции. Включает все регуляторные факторы, являющиеся внешними по отношению к любой клетке разви­вающегося организма. Эпигенетические регуляторные факторы включа­ют: межклеточные (гомотипические) и межтканевые (гетеротипические) взаимодействия. Межклеточйые взаимодействия могут заключаться в механических контактах, восприятии лучевых, химических и других сиг­налов, которые в конечном итоге изменяют направление дифференциров­ки клеток. К межклеточным механизмам регуляции относится также кей-лонная регуляция. Межтканевые взаимодействия могут сводиться к: 1

. Индукционным взаимодействиям; 2. Появлению градиентов (организа­ционных центров) в тканях и органах — участков с наибольшей актив­ностью физиологических процессов.

4. Организменный уровень регуляции. На этом уровне регуляция обес­печивается нервной, эндокринной и иммунной системами материнского организма, а в последующем — и организма плода.

Нервная регуляция. Поскольку между организмами матери и плода отсутствуют анатомические нервные связи, то влияние нервной системы матери на эмбрион опосредуется нейромедиаторами, которые после синте­за их нервными образованиями материнского организма проникают через плацентарный барьер и влияют на развитие эмбриона (прямое влияние). Кроме того, они могут изменять кровоток в плаценте и тем самым — и эмбриогенез (непрямое влияние). После достижения собственной нервной системой необходимого уровня развития она включается в регуляцию эмб­риогенеза. Ее роль заключается в инициации дифференцировки формиру­ющихся морфофункциональных единиц органа, в нервно-трофическом вли­янии на них.

Эндокринная регуляция. На развитие зародыша оказывает выраженное влияние эндокринная система матери. Это влияние имеет место во все пе­риоды эмбриогенеза. Нарушение гормонального статуса материнского организма, равно как и прием гормональных лекарственных веществ мо­жет приводить к нарушению развития плода вплоть до развития уродств. После становления плаценты она также включается в регуляцию разви­тия плода. Наконец, с момента становления эндокринной системы плода она начинает влиять на эмбриогенез: рост организма плода, отдельных его органов, развитие функций этих органов. При этом устанавливаются строгое согласование между функцией тождественных эндокринных орга­нов матери и плода.

Иммунная регуляция. В настоящее время установлено, что для нор­мального эмбриогенеза необходимы нормальные иммунологические взаи­моотношения между материнским организмом и организмом зародыша или плода. Иммунная система матери, обладая толерантностью к антиге­нам зародыша (плода), способна оказывать регулирующее воздействие на клетки эмбриона. Собственная иммунная система плода после ее развития определяет регуляцию качественной и количественной сторон происходя­щих в эмбриогенезе процессов.

Включение вышеназванных механизмов регуляции происходит в стро­го определенном порядке. Новый механизм регуляции начинает действо­вать тогда, когда организм эмбриона подготовлен к его восприятию, при этом действие предыдущего регулирующего фактора либо заканчивается, либо происходит наложение одного фактора на другой. Момент смены регу­лирующих факторов относится к критическим периодам. КЛИНИЧЕСКИЕ АСПЕКТЫ. Клинические аспекты медицинской эм­бриологии заключаются в следующем.

1. Регуляция фертильности (рождаемости, численности человеческом популяции). Знание эмбриологии позволяет успешно применять как кон трацепцию для предотвращения беременности, так и бороться с бесплодием.

2. Большое клиническое значение имеет знание врачом-акушером кри­тических периодов эмбриогенеза и последствий действия на организм за­родыша тератогенных факторов. Это лежит в основе профилактики врож денных аномалий и уродств.

3. Знание закономерностей эмбриогенеза позволяет акушерам-гинеко­логам правильно оценивать течение беременности, определять режим жиз­недеятельности беременной женщины.

4. Клонирование человека. В последние годы благодаря достижениям клеточной инженерии ученые вплотную подошли к получению клонов че­ловека, т.е. совершенно идентичных его копий. Для этого после получения зародышей путем экстракорпорального оплодотворения вскрывают блестя­щую оболочку и разделяют зародыш на части, которые подсаживают на новые z. pellucida. Эти части после имплантации в полость матки дают развитие совершенно идентичных индивидуумов (клонов). Вначале эмбри­ологи, проводя такие исследования, манипулировали на эмбрионах, нахо­дящихся на стадии 2—8 бластомеров, а в последующем положительные ре­зультаты были получены также с морулами и бластоцистами. В настоя­щее время уже получены клоны домашних животных путем пересадки со­матических ядер в яйцеклетку. Возможности клонирования человека обус­ловлены достижениями в трансплантации ядер клеток, в частности ядер соматических клеток в половые клетки. Дальнейшее развитие исследова­ний в этом направлении может сделать реальностью и клонирование че­ловека. Это наряду с положительными моментами может создать целый ряд проблем морально-этического, криминального плана (появление лю­дей-двойников и др). и т.д.

Глава 7

ОСНОВЫ УЧЕНИЯ О ТКАНЯХ (ВВЕДЕНИЕ В ОБЩУЮ ГИСТОЛОГИЮ)

Раздел гистологии, изучающий развитие, строение и функции тканей животного организма, называется общей гистологией.

ОПРЕДЕЛЕНИЕ ПОНЯТИЯ «ТКАНЬ». Еще задолго до изобретения микроскопа анатомы обнаружили в организме человека и животных одно­родные части, в разных соотношениях входящие в состав органов и опре­деляющие их строение. Первоначально эти части различали по чисто вне­шним признакам, выделяя мягкие, жидкие, волокнистые, клетчатые (пост­роенные из камер) части. Термин «ткань» впервые применил английский ученый Н. Грю в 1671 г. в книге " Начала анатомии растений". При препа­рировании растений он обнаружил, что их структура напоминает структу­ру текстильной ткани. Иногда нечто похожее обнаруживалось и при пре­паровке животного организма. Поэтому в период оформления гистологии как самостоятельной науки понятие " ткань" стало использоваться как пред­ставление о простых системах организма. С этого времени начал формиро­ваться новый уровень микроскопического изучения организма — тканевой.

За более чем 200-летний период изучения тканей было предложено ог­ромное количество определений понятия «ткань». Одно из первых науч­ных определений было дано в 1852 году А. Келликером: «Ткань — это ком­плекс элементарных составных частей, объединенных в одно морфологи­ческое и физиологическое целое». В понятие «части» он включал клетки, синцитии, симпласты.

Удачное для своего времени определение ткани дал русский советский гистолог А.А. Заварзин (1938): «Ткань есть филогенетически обусловлен­ная система гистологических элементов, объединенных общей функцией, структурой и часто — происхождением".

В последнее время интенсивно изучается так называемый дифферон-ный принцип организации тканей. Поэтому существует ряд современных определений ткани, основанных на представлениях о дифферонах.

Клеточный дифферонэто совокупность клеточных форм, со­ставляющих ту или иную линию дифференцировки от стволовой до терминально дифференцированной клетки. Начальной клеткой клеточ-ного дифферона является стволовая клетка. Следующую стадию гисто i-гического ряда образуют полустволовые, или коммитированные, клеть и которые в отличие от стволовых клеток могут дифференцироваться тольк.. i каком-то одном направлении. Третьей и самой многочисленной часты-дифферона являются дифференцированные, функционально активны, клетки. Наконец, четвертым компонентом являются старые, функционал ьч • неактивные клетки и постклеточные структуры (см. ниже). В качестве при мера можно рассмотреть дифферон зпителиоцитов эпидермиса — кератин*. цитов. Он включает в себя такие клетки на последовательных стадиях рал..' тия, расположенных на разных уровнях эпидермального пласта:

Базальный кератиноцит (стволовая и полустволовая клетки) > шиповатый кератиноцит—» зернистый кератиноцит—» блестящий кератиноцит—) роговая чешуйка (корнеоцит, являющийся постк.и точной структурой).

Современные определения ткани в большинстве своем учитываю; дифферонный принцип организации тканей. Одно из таких определен!,; сделано А.А. Клишовым (1981): «Ткани представляют собой мозаичную морфофункциональную систему взаимодействующих клеточных дифферо нов, различающихся по генезу, направлению и уровню дифференцирован клеток»-.

Различают монодифферонные (состоят из одного дифферона) и поли дифферонные ткани. К первым относятся, например, сердечная мышечная ткань (содержит один дифферон кардиомиоцитов), гладкая мышечная ткань (имеется только дифферон гладких миоцитов), а примером вторсл" вида тканей является рыхлая волокнистая неоформленная соединительная ткань (РВНСТ), которая содержит диффсроны фибробластов, макрофа гов, тканевых базофилов, нлазмоцитов, жировых клеток и др. В полидиф феронных тканях выделяют основной дифферон (в РВНСТ это дифферон фибробластов) и второстепенные диффероны.

Ткани представляют собой не простую сумму клеток и неклеточны-структур, а тканевую систему, в которой составляющие элементы тесп< взаимосвязаны между собой.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.