Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Виды световой микроскопии






1. Стандартный световой микроскоп. В стандартном световом микро­скопе для просвечивания гистологических объектов используется видимая часть спектра света. Длина ее волны в среднем равна 0, 4 мкм. Следова­тельно, разрешающая способность светового микроскопа равна примерно 0, 2 мкм, а его общее увеличение составляет около 2500 раз (полезное —1500 раз).

2. Ультрафиолетовая микроскопия. В данном случае для просвечива­ния объекта используется ультрафиолетовая часть спектра, имеющая дли­ну волны 0, 2 мкм. Таким образом, разрешающая способность этого мик­роскопа равна 0, 1 мкм, что в 2 раза выше, чем у обычного микроскопа. Так как полученное изображение невидимо для глаза, то оно регистрируется на фотопластинке или люминесцентном экране.

3. Люминесцентная (флуоресцентная) микроскопия. Это метод микроскопии, в котором используется явление люминесценции, или све­чения некоторых веществ при воздействии на них коротковолновых лучей. Поглощая коротковолновое излучение, молекулы этих веществ переходят в возбужденное состояние и сами начинают излучать свет, который имеет длину волны большую, чем длина волны возбуждающего света. Такой свет и регистрируется в люминесцентном микроскопе. Коротковолновое излуче­ние и свет люминесценции разделяются при помовш светофильтров. Раз­личают аутолюминесценцию (первичную люминесценцию) и наведенную (вторичную) люминесценцию. При аутолюминесценции гистологический объект испускает свет люминесценции без предварительной обработки. Любая клетка живого организма обладает собственной люминесценцией, которая, однако, в большинстве случаев очень слабая и трудно регистри­руется. При наведенной люминесценции объект обрабатывается специ­альными люминесцирующими красителями, которые связываются с клет­ками и тканями организма, делая их видимыми. Примером такого краси­теля является акридиновый оранжевый. Он достаточно прочно связывается с нуклеиновыми кислотами и вызывает красное свечение РНК и зеленое — ДНК. В комплект современных люминесцентных микроскопов включают­ся фотометрические насадки, позволяющие измерять интенсивность люми­несценции, что дает возможность количественного определения связываю­щего люмииесцирующии краситель вещества.

4. Интерференционная микроскопия. В интерференционном микроско­пе падающий на объект световой поток раздваивается. При этом одна его часть идет на объект, а другая — минуя его. Затем два пучка вновь соеди­няются, и при этом возникает интерференционное изображение объекта. По сдвигу фаз одного пучка относительно другого можно определить точ­ную концентрацию вещества в клетке. Таким образом, интерференцион­ный микроскоп также позволяет осуществлять количественные морфоло­гические исследования.

5. Поляризационная микроскопия. В микроскопах этого типа световой пучок при пом.ощи специальных призм (призмы Николя) разлагается на два луча, поляризованных во взаимно перпендикулярных плоскостях. Проходя через структуры со строгой ориентацией молекул, световые лучи запаздывают относительно друг друга в результате неодинакового их пре­ломления. Далее пучок света пропускается через анализатор, который оп­ределяет степень отклонения поляризации света при прохождении через объект. Это позволяет определить характер расположения молекул, на­пример, в миофибриллах, а также наблюдать спиральные или не видимые при других методах исследования структуры.

6. Фазово-контрастная микроскопия — метод изучения клеток в световом микроскопе, который имеет фазово-контрастное устройство. В нем использо­ван принцип неодинакового изменения фаз световых лучей при прохождении их через разные по плотности структуры изучаемого объекта (рис. 2.3). При этом происходит смещение фаз световых волн, что приводит к повыше­нию контрастности структур объекта и позволяет рассматривать неокра­шенные и живые клетки. Разновидностью фазово-контрастного микро­скопа является темнопольный микроскоп, который дает негативное изображение по сравнению с позитивным фазовоконтрастным изобра­жением.

 


 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.