Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Виды световой микроскопии
1. Стандартный световой микроскоп. В стандартном световом микроскопе для просвечивания гистологических объектов используется видимая часть спектра света. Длина ее волны в среднем равна 0, 4 мкм. Следовательно, разрешающая способность светового микроскопа равна примерно 0, 2 мкм, а его общее увеличение составляет около 2500 раз (полезное —1500 раз). 2. Ультрафиолетовая микроскопия. В данном случае для просвечивания объекта используется ультрафиолетовая часть спектра, имеющая длину волны 0, 2 мкм. Таким образом, разрешающая способность этого микроскопа равна 0, 1 мкм, что в 2 раза выше, чем у обычного микроскопа. Так как полученное изображение невидимо для глаза, то оно регистрируется на фотопластинке или люминесцентном экране. 3. Люминесцентная (флуоресцентная) микроскопия. Это метод микроскопии, в котором используется явление люминесценции, или свечения некоторых веществ при воздействии на них коротковолновых лучей. Поглощая коротковолновое излучение, молекулы этих веществ переходят в возбужденное состояние и сами начинают излучать свет, который имеет длину волны большую, чем длина волны возбуждающего света. Такой свет и регистрируется в люминесцентном микроскопе. Коротковолновое излучение и свет люминесценции разделяются при помовш светофильтров. Различают аутолюминесценцию (первичную люминесценцию) и наведенную (вторичную) люминесценцию. При аутолюминесценции гистологический объект испускает свет люминесценции без предварительной обработки. Любая клетка живого организма обладает собственной люминесценцией, которая, однако, в большинстве случаев очень слабая и трудно регистрируется. При наведенной люминесценции объект обрабатывается специальными люминесцирующими красителями, которые связываются с клетками и тканями организма, делая их видимыми. Примером такого красителя является акридиновый оранжевый. Он достаточно прочно связывается с нуклеиновыми кислотами и вызывает красное свечение РНК и зеленое — ДНК. В комплект современных люминесцентных микроскопов включаются фотометрические насадки, позволяющие измерять интенсивность люминесценции, что дает возможность количественного определения связывающего люмииесцирующии краситель вещества. 4. Интерференционная микроскопия. В интерференционном микроскопе падающий на объект световой поток раздваивается. При этом одна его часть идет на объект, а другая — минуя его. Затем два пучка вновь соединяются, и при этом возникает интерференционное изображение объекта. По сдвигу фаз одного пучка относительно другого можно определить точную концентрацию вещества в клетке. Таким образом, интерференционный микроскоп также позволяет осуществлять количественные морфологические исследования. 5. Поляризационная микроскопия. В микроскопах этого типа световой пучок при пом.ощи специальных призм (призмы Николя) разлагается на два луча, поляризованных во взаимно перпендикулярных плоскостях. Проходя через структуры со строгой ориентацией молекул, световые лучи запаздывают относительно друг друга в результате неодинакового их преломления. Далее пучок света пропускается через анализатор, который определяет степень отклонения поляризации света при прохождении через объект. Это позволяет определить характер расположения молекул, например, в миофибриллах, а также наблюдать спиральные или не видимые при других методах исследования структуры. 6. Фазово-контрастная микроскопия — метод изучения клеток в световом микроскопе, который имеет фазово-контрастное устройство. В нем использован принцип неодинакового изменения фаз световых лучей при прохождении их через разные по плотности структуры изучаемого объекта (рис. 2.3). При этом происходит смещение фаз световых волн, что приводит к повышению контрастности структур объекта и позволяет рассматривать неокрашенные и живые клетки. Разновидностью фазово-контрастного микроскопа является темнопольный микроскоп, который дает негативное изображение по сравнению с позитивным фазовоконтрастным изображением.
|